Style Tracking Expressive Pad System

Arcade Rhythm Game with Pose Detection

Group 8 Authors

Christopher Jani Jon Kaila Peeples Andres Blake Whitaker
Solanilla Lumibao Abrams
Computer Computer Photonics and Computer Electrical
Engineering Engineering Science Engineering Engineering
Engineering

Reviewer Committee:
Dr. Stephen Eikenberry = CREOL Professor

Dr. Saleem Sahawneh ECE Lecturer
Dr. Justin Phelps ECE Professor
Mentor:

Dr. Chung Yong Chan
Dr. Aravinda Kar

Table of Contents

Listof Tables Vv
List Of Figures vii
1. Executive Summary 1
2. Project Description 2
2.1 Motivation and Background 2

2.2 Existing Product/Past Project/Prior 3

221 DanceDanceRevolution 3

222Pump ltUp 4

223 Dance Around 4

224 Dancerush Stardom 4

225 StepManiaX 5

2.26 MicrosoftKinect 5

227 JdustDance 8
22.8Pokemon GO 8

229 Mediapipe 8

2210 Chunithm 8

23 ProjectGoals 9

231 Hardware Goals 9
23.280ftware Goals 10

2.4 Project Objectives 10

2.4.1 Prototype lllustration/Blueprint 12

2.5 Project Features and Functionalities 14

2.5.1 Style Score and Pose-Based Evaluation System 15

2.6 Requirements and Specifications 17

2.6.1 Parts Specification Requirements Table 17

2.6.2 Noteson Specifications, 18

2.7 Hardware Block Diagram 19

2.8 Software Block Diagram 20

29 Houseof Quallity 21

3. Research 22
3.1 Embedded Systems 22
BAAMCUVS SBC 22

3.1.2 MCU is the Better Option... ButWhy? 23

A3 ArdUING 24

3. 1.4 Teensy 26
3.1.5Raspberry PiPico 28

3 A6 ESP32 . . 28

3.7 STMB2 . .. 31

31.8MCU Selection 33

3.2Dance Pad Sensor 33

3.2.1 Force-Sensing Resistors 33

3.22Load Cellso 34

3.23 StrainGauges (Raw) 34

3.2.4 Piezoelectric SeNsors 34
3.25Break Beam Sensors 35

3.2.6 Dance Pad Sensor Selection 35

3.2.7 Force Sensing Resistor Selection 37

3.3 Communication Protocols 38
3.3.1 External Communication Protocols 38

3.3.2 Internal Communication Protocols 39
3.3.2.1 UART (Universal Asynchronous Receiver-Transmitter) . . 39

3.3.2.2 Inter-Integrated Circuit (I1I2C) 39

3.3.2.3 Serial Peripheral Interface (SPI) 40

3.3.3 Comparison and Final Selection 41

3.4 Analysis of 12V Power Supplies for Embedded Systems 41
3.4.1 The Critical Role of the Power Supply 41

3.4.2 Project Power Requirements 42

3.4.3 Power Supply Technologieso, 42

3.4.4 Switch-Mode Power Supply (SMPS) Technology 43

3.4.5 Comparisonand Selection 44

3.4.6 Conclusion and Implementation 46

3.5 Analysis of LED Driver Technologies for High-Power lllumination 46
3.5.1 Introductionto LED Drivers 46

3.5.2 Fundamentals of LED Operation and Dimming 47

3.5.3 Comparison of LED Driver Circuit Topologies 47

3.5.4 Dedicated Switching (Buck) LED DriverIC 48
3.5.5Comparisonand Selection 49

3.6 Imaging Subsystem 50
3.6.1 Monochromevs RGB Sensor............................ 50
3.6.2Camera Comparisont 51
3.6.3Lens Comparison 51

3.7 LED illumination Technology 55
371 LED Part Comparison 57

3.8 Embedded System DevelopmentLanguages 58
3.8 C 58

3.8 2 Python 59
3.8.3Java. ... 59

3.8.4 Embedded System Development Languages Selection 59

3.9 Computer Vision 60
3.9.1 Pose Estimation Techniques 60
3.9.1.1 Classical Techniques 60
3.9.2Modern Techniques 63

3.9.3 Computer Vision Library Selection 67

3.9.4 Prototyping with MediaPipe and OpenCV 68

3.9.5 Considerations for Embedded Systems 69

3.9.5.1 Hardware Capabilities of the JetsonNano 69

3.9.5.2 Software Stack and Runtime Operation.............. 70

3.9.5.3 Thermal and Power Management Constraints 71

3.9.5.4 Game Engine Integration and Resource Synchronization 72

3.9.5.5 Memory Footprint and Latency Targets 72

3.9.5.6 Summary and Design Tradeoffs 72

3.9.6 Programming Languages for Game and Computer Vision 73
3.9.6.1 Evaluation Criteria 74
3.96.2Latency 74
3.9.6.3ACCUMACY . . .\ 75
3.96.4Robustness 75

3.9.6.5 Integration with the Game Engine 75

310 Game ENgines 76
3101 Godot 76
310 2UnNity . .. 80
3.10.3Unreal Engine 84
3.10.4 Version Control. 85
31041 Github 85
3.104.2Perforce 86

3.10.4.3 Unity VersionControl 87

3.10.4.4 Unreal Engine VersionControl 88

3.10.5 Game Engines Comparison 88
3.10.6 Version Control Comparison 89

4. Standards and Design Constraints 90
4.1 IEC 62471 - Photobiological Safety 96
4.2 1S0O 9241-210 - Ergonomics of human-system interaction 96
4.3 1EC 60598 Luminaires i 97
4.4 Optical Design Constraints 97
4.5 Design Trade-off: Full Coverage vs. Low Distortion 100
45 1FOVLenscomparisont 100

4.5.2 Distortion Impacton Al Performance 101
5.Comparison of AlENngines 101
BACase Studies 101
5.2 ChatGPT ... 102
53Google Gemini. 103
54 Microsoft Copilot 104
5.5 DeepSeeK e 106
5.6 CoNCIUSION 107
6. Hardware Design 109
6.1 Dance Pad Master ControllerBoard 109
6.2PowerHub Board 111
6.3 Input TilesBoard (X9) 112
6.4 System-Level Hardware Integration 114
6.4.1 Power Distribution and Regulation 114

6.4.2Controland DataFlow 114

6.4.3 Vision System lllumination Control 115

6.5 Optical Imaging System Design i 115
6.6 lllumination System Design 116
6.7 Optical System Testing and Verification 118
7.80ftware Design 119
7 Input/Output 119
72 S ate . .. 120
7.3EventHandling 121
7.4PoseHandling 123
8. System Fabrication/Prototype Construction 124
8.1PCB LayoutStrategy 124
8.2 Master Control Board Layout 124
8.3 PowerHubBoard Layout 125
84 InputTile(s)Layout 126
9. System Testingand Evaluation 126
9.1 Prototype Construction 126
9.2 Hardware and Software Testing 129
9.3 Performance Evaluation 129
93 1 Hardware 129
9.3.280ftware 131

9.4 Optoelectronics Feasibility Study and Testing 131
9.4.1 Design Requirements and Specifications 132

9.4.2 Optical System Design 132

9.4.3 lllumination Systemdesign 135

9.4.4 Optical lllumination System Testing and Verification 136

9.4.5 Qualitative Distortion Assessment 136

9.4.6 IR Sensitivity Verification 137

9.5 0verall Integration 137
95 1 Hardware 137

9.5.2 Optical and lllumination Systems 138

953 Software 138

9.6 Planfor SD2 139
9.6. 1 Hardware 139

9.6.2 Optical and lllumination Subsystems 140

9.6.3Gameplay system 141

10. Administrative Content 143
101 Budget 143
10.2Billof Materials 143
10.3 Distribution of Worktable 145
10.4 Project Milestones forSD1and SD2 146
10.4.1 Project Milestones forSD1 146
10.4.2 Project Milestones forSD2 147
10.4.3 DevelopmentRoadmap 148

11. CoNClUSION o 150

APPENdICES e 153
AppendixX A . . 153
Appendix B 156

List of Tables

Table 2.1 List of all of the project’s engineering requirements and specifications 17

Table 3.1 Comparison table between MCUs and SBCs using their features 23

Table 3.2 Arduino boards and their features comparisontable 25

Table 3.3 Teensy boards and their features comparisontable 27

Table 3.4 ESP32 boards and their features comparisontable 30

Table 3.5 STM32 common MCU chips from different variants comparison table 32
Table 3.6 Dance Pad Sensors and their features comparisontable 36

Table 3.7 FSR Model 408 and DIY Conductive Material + Velostat comparison table .38
Table 3.8 Comparison table of communication protocols 41

Table 3.9 Comparison table of the three types of power supplies in the context of the

dance pad project’s specificneeds 45
Table 3.10 Comparison table of driver technologies 49
Table 3.11 RGB vs. Monochrome Sensor Comparisonc.c.c..... 51
Table 3.12 Camera comparisontable 52
Table 3.13 Lens options and their specifications 55
Table 3.14 lllumination Method Comparison 56

Table 3.15 Comparison of IR illumination Formats: Individual LEDs vs. LED Strips . . .57
Table 3.16 LED Strip comparisontable 58

Table 3.17 Top development languages for MCU comparison table 60

Table 3.18 Comparison table of different computer vision technology 67

Table 3.19 Game engines comparison table 88
Table 3.20 Version Control Comparison Table 89
Table 4.1 Optical and illumination standards 97
Table 4.2 Optical and lllumination Design constraints 99
Table 5.1 Microsoft copilot Computer Vision Table 105
Table 5.2 Microsoft copilot Rhythm Synchronization Table 106
Table 6.1 Engineering requirements for the optical imaging subsystem 116
Table 6.2 Engineering requirements for the illumination subsystem 117
Table 7.1 Game Arrow Mapping 119
Table 9.1 Lens Selection Justification 134
Table 9.2 Depth of Field Calculation for 3.2 mm /2.3 lens at 1830 mm subject

AISTANCE. 135
Table 10.1 Overall Project Itemized Bill of Materials 143
Table 10.2 Master Controller Board (1 required) ltemized Bill of Materials 144
Table 10.3 Power Hub Board (1 required) Itemized Bill of Materials 144
Table 10.4 Tile Board (9 required) ltemized Bill of Materials 144
Table 10.5 PCB board total cost evaluationtable 145
Table 10.6 Distribution of responsibilities of each member for this project 145
Table 10.7 Project Milestones SDT i 146
Table 10.8 Project Milestones for SD2 147

Vi

List of Figures

Figure 2.1 StepManiax on UCF at Knightros 2
Figure 2.2 lllustration prototype of StepManiaX 5
Figure 2.3 Joint layout used by Microsoft Kinect's skeletal tracking system 6
Figure 2.4 Kinect Architecture e 7
Figure 2.5 3D Depth Image in Grayscale 7
Figure 2.6 Electronic Blueprint Prototype lllustration 12
Figure 2.7 Dance Pad 3D Model i 13
Figure 2.8 Conceptual Rendering of the S.T.E.P.S Gameplay Environment 13
Figure 2.9 Schematic layout of the optical and illumination subsystems 14
Figure 2.10 Images of the tentative poses (modeled using PoseMy.Art) 16
Figure 2.11 Hardware Block Diagram 19
Figure 2.12 Software Block Diagram of Gameplay, Menu, and Chart Creator 20
Figure 2.13 House of Quality e 21
Figure 3.1 SMPS Block Diagram 43
Figure 3.2 12V 5A SMPS Circuit Diagram 44
Figure 3.3 MP2489 LED Driver Circuit Diagramc..oo... 49

Figure 3.4 Top-down field of view comparison between candidate M12 lens at
6ft camera mounting distance. 53

Figure 3.5 DOF comparison between candidate M12 lenses based on calculated

near and far limits at 1.83 m subject distance. 54
Figure 3.6 Example of Background Subtraction with OpenCV 61
Figure 3.7 Graph representation of a typical pose fora humanbody 62
Figure 3.8 OpenPose working on a large amount of subjects 64

Figure 3.9 Example prototyping of OpenCV and MediaPipe on Christopher Solanilla .65

Figure 3.10 BlazePose demonstrating high performant pose tracking capabilities

With 3 diMensSioNS e 66
Figure 3.11 Godot default interface 77
Figure 3.12 Scene Tab 78
Figure 3.13 FileSystem Tab e 79
Figure 3.14 Inspector Tab 80
Figure 3.15 Unity default 3D interface 81

Figure 3.16 Unity default 2D interface 81

Figure 3.17 Unity Hierarchy and Inspector Tabs 83
Figure 3.18 Unity Project Tab e 84
Figure 3.19 Unity Hierarchy and Inspector Tabs 84
Figure 6.1 Dance Pad Master Controller Board Schematic 109
Figure 6.2 Power Hub Board Schematic 111

Figure 6.3 Input Tiles Board Schematic 112
Figure 7.1 Input/Output Flow Diagram 120
Figure 7.2 Note State Flow Diagram i 121
Figure 7.3 Event Scoring Flowchart 122
Figure 7.4 Pose State Flow Diagram i, 123
Figure 9.1 Top view: 10x10 inches central acrylic tile, 12x12 inch w/ border,

secured on wood base w/ standoff blocks 127
Figure 9.2 Top view w/ 10x10 in central tile removed; electrical routing holes 127
Figure 9.3 Bottom view: standoff blocks to allow for easy cable routing 128

Figure 9.4 Top View: w/ Force Sensitive Resistors (FSR) placed under acrylic tile . . 128

viii

Figure 9.5 Pairs of FSRs on opposite ends chosen integration layout

Figure 9.6 Mini demo video pad with breadboard and single FSR integration

1. Executive Summary

The landscape of arcade rhythm games has traditionally focused on a singular metric of
success: timing accuracy. This paradigm often overlooks a key element of dance:
expressive performance. The Style Tracking Expressive Pad System (STEPS) project
was conceived to address this gap by creating a new generation of dance games that
rewards both precision and creativity. This project delivers a fully integrated arcade-style
system, from custom hardware to a specialized game engine, centered around an
innovative computer vision system that quantitatively scores a player's stylistic
movement.

The core of the STEPS project is a custom 9-panel dance pad that merges the
gameplay styles of iconic rhythm games into a unique, hybrid experience. To meet the
demanding requirements for reliability and complexity, a sophisticated modular
hardware architecture was developed. This distributed system is composed of three
distinct custom Printed Circuit Boards (PCBs): a central Master Controller, a
high-current Power Hub, and nine identical "smart" Tile Boards. Each tile is an
independent, microcontroller-driven module responsible for its own sensor reading and
aesthetic LED feedback, all communicating with the Master Controller over a robust 12C
bus. This advanced, modular design creates a scalable and easily maintainable
hardware platform.

The primary innovation of the STEPS project is its real-time, vision-based "Style Score"
system. This system utilizes a camera and an 850nm infrared (IR) LED illumination ring,
driven by a custom constant-current driver, to ensure reliable player tracking in any
lighting condition. Using the MediaPipe pose estimation framework, the system
analyzes the player's full-body movements and detects when they successfully execute
predefined, expressive poses during gameplay. This adds a new dimension to the
genre, encouraging players to engage in dynamic, full-body performance rather than
just minimalistic, efficient footwork.

The successful integration of these three pillars: custom modular hardware, a tailored
software game engine, and a real-time computer vision system, represents a significant
engineering achievement. The STEPS project successfully pushes the boundaries of
interactive entertainment, delivering a proof-of-concept for a new style of rhythm game
that is more engaging, physically expressive, and technically advanced than its
predecessors. The final prototype is a testament our team's multidisciplinary skills in
embedded systems design, power electronics, software development, and optical
engineering, laying the groundwork for a potential commercial product for both arcade
and home use

2. Project Description
2.1 Motivation and Background

In recent years, rhythm games have surged in popularity among both casual and
competitive gamers. Titles like Dance Dance Revolution (DDR), Pump It Up (PIU), and
StepManiaX offer not only fast-paced gameplay but also unique forms of physical
interaction that make them stand out from traditional video games. For readers
unfamiliar with rhythm games: players typically choose a song, and as the music plays,
visual cues (usually arrows) scroll on the screen toward a target zone. Players must
step on corresponding arrows on the dance pad in time with the music. Successful
timing earns points, while misses break combos and reduce scores. In the games
aforementioned, players are often using their feet to step on panels that are labeled with
directional arrows. In DDR it is with the up down left right arrows, StepManiaX has the
same but with an additional center arrow, and Pump it Up has diagonal arrows instead
of the 4 up down left right arrows with the center note as well.

Arcad&Pads With
LEDs -

»

Figure 2.1 StepManiax on UCF at Knightros

As lifelong fans of rhythm games, we’ve always aspired to create a game that blends
the fast-paced footwork of DDR and PIU with innovative mechanics that reward not only
timing accuracy but also expressive performance. This passion became the foundation
for our senior design project: a custom-built rhythm arcade machine that reimagines the
traditional dance pad format. Our system features a unique 9-panel layout, combining
the four cardinal directions, four diagonals, and a center panel. This effectively merges
the core mechanics of DDR and PIU into a new hybrid experience.

To take it a step further, we are integrating a computer vision system capable of
analyzing player movement during gameplay. This system detects whether the player
completes the charts with minimal effort or performs dynamic, stylish movements such
as spins or arm gestures. Players who demonstrate expressive flair are rewarded
through a secondary metric we call the Style Score, adding a new dimension to
gameplay that celebrates both precision and creativity.

Our team brings a diverse range of skills and experiences to the project. Our Computer
Engineering majors contribute a strong passion for rhythm games, hands-on experience
from developing a basic dance pad prototype in the past, and solid experience in
hardware integration and software development. One of our teammates has a
background in dance, offering valuable insight into expressive movement, physical
design, and is also well-versed in PCB design. Another teammate serves as the
president of the UCF Esports Club, providing a competitive gaming perspective that
helps shape our gameplay mechanics and balance. Our team is rounded out by a
Photonics Science and Engineering student who brings specialized expertise in optics
for our computer vision system, and an Electrical Engineering student who serves as
our hardware lead.

We believe this blend of technical, creative, and performance-oriented backgrounds
makes our team uniquely positioned to create a rhythm game that is both entertaining
and technically ambitious. By combining game development, embedded hardware, and
real-time computer vision, we aim to push the boundaries of traditional rhythm games.
Ultimately, we envision this system not just as a school project, but as a potential
commercial product suitable for both arcade and home use. Overall, our project is a
tribute to the genre we love and an innovative leap forward in how rhythm games are
played.

2.2 Existing Product/Past Project/Prior Related Work

2.2.1 Dance Dance Revolution

Dance Dance Revolution (DDR), developed by Konami in 1998, is one of the most
iconic rhythm games in the world. Players step on a 4-panel dance pad — with up,
down, left, and right directional arrows — in time with scrolling on-screen cues
synchronized to music. DDR is widely recognized for its role in popularizing rhythm
games globally and has been featured in both arcade and home console formats. It
uses pressure-sensitive panels and a scoring system based on timing accuracy,

rewarding "Perfect," "Great," or "Miss" for each input. However, the game focuses
purely on foot-based precision and lacks a scoring component for stylistic or expressive
movement. Players who still choose to complete charts with style are called “free
stylers” and are highly respected in the community for completing easy to mid level
charts with very hard expressive and complicated movement. This movement can range
anywhere from spinning, to swaying the arms, to handstands and break dancing.

2.2.2 Pump It Up

Pump It Up (PIU), developed by Andamiro in 1999, is a 5-panel dance rhythm game
that includes four diagonally placed panels and a center panel. PIU emphasizes
freestyle movement more than DDR and is especially popular in South Korea. While
PIU retains the same timing-based scoring mechanics as DDR, it introduces more
physically varied and complex choreography due to its diagonal input layout.
Nonetheless, PIU still lacks any integrated camera system or style-based scoring . Just
like DDR, PIU has the same respected players who complete charts with freestyling
despite still not being rewarded for doing so in game.

2.2.3 Dance Around

Dance Around is a rhythm game similar to Dance Dance Revolution but instead of using
pressure-sensitive dance pads, it relies solely on a camera-based motion tracking
system. This is done by using VisionPose to generate a 3D model of the player’s body
and assessing their dance performance based on their ability to match the poses given
and their own expressive movements[2]. During the game, players are prompted to
mimic target poses displayed on the monitor, with visual cues that indicate the proper
hand or foot placement. However, customer feedback has highlighted several limitations
of this system. Customers have stated that the game has consitently misevaluated full
body movements and is only capable of capturing the hand and foot positions of the
players reliably[3]. Additionally, customers have noted that the calibration process could
be overly lengthy, which detracts from the ease of use.

2.2.4 Dancerush Stardom

Developed by Konami, DANCERUSH STARDOM is a freestyle rhythm dance game that
eliminates the traditional dance pad structure in favor of a large pressure-sensitive
surface. The game uses a camera system to provide feedback and record gameplay,
but the scoring is still based on foot movement across a large flat pad with visual
indicators for steps and slides. The game promotes freestyle dancing, including spins
and slides, and is considered more modern and expressive than DDR. However, like
Dance Around, it does not feature a true pose recognition or performance grading
system. Flair and dance expression are encouraged but not quantitatively rewarded
within the game mechanics.

2.2.5 StepManiaX

StepManiaX is a rhythm game inspired by DDR and PIU and developed by the creators
of StepMania. It uses a 5-panel pad layout with center, up, down, left, and right panels,
and is designed for high durability and fithess applications. StepManiaX includes a
touchscreen interface and modernized music selection Ul, with content designed to be
accessible for both casual and serious players. While it modernizes the user experience
and supports a wide range of difficulty levels, it retains the traditional scoring focus on
timing accuracy. There is no implementation of camera-based tracking or any scoring
system that rewards visual expression or dance style beyond note timing.

Figure 2.2 lllustration prototype of StepManiaX, a 5 panel Dance Rhythm Game Arcade
Cabinet[6]

2.2.6 Microsoft Kinect

Computer vision (CV) technologies have seen increasing integration into modern
games, from facial detection and hand tracking to body motion recognition. These
advancements have allowed developers to create more immersive and interactive
gaming experiences by enabling players to interact with virtual worlds using natural
body movements rather than traditional input devices.

The Microsoft Kinect, released in 2010 for the Xbox 360, represented a major leap
forward. Utilizing an infrared depth sensor and RGB camera, the Kinect could track

full-body skeletons in real-time using a technique called skeleton tracking, which
mapped 20 joints of the player’s body. This enabled games like Kinect Adventures and
Dance Central to support full-body gameplay without the need for controllers. The
Kinect SDK and the associated machine learning models enabled gesture detection and
activity recognition, expanding the use of CV beyond entertainment into healthcare,
education, and robotics. However, challenges such as latency, lighting interference, and
limited tracking accuracy in multi-person scenes persisted.

While the Kinect was not utilizing conventional Computer Vision techniques and opted
for IR sensing, it was able to prove very effective for the time allowing less powerful
hardware like the xbox to perform simple calculations. By analyzing distortions in an
infrared dot pattern, Kinect could calculate depth and track motion without any physical
markers.

To make skeletal tracking accessible to developers, Microsoft released the Kinect SDK,
enabling applications to extract joint data and recognize poses. A foundational feature
of this SDK was its ability to detect up to 20 distinct skeletal joints, as visualized in
Figure 2.3. These include major points such as the head, spine, hips, shoulders, and
limbs. This allowed developers to build gesture-based interfaces, games, and virtual
assistants capable of interpreting full-body movement.

SHOULDER RIGHT {:‘ "

(™

SPIME

HAND _RIGHT HEAD SHOULDER CENTER HAND_LEFT
S N o®
WRIST_RIGHT ™= - .;F & S WRIST_LEFT
ELBOW RIGHT &' ELBOW LEFT

SHOULDER _LEFT

;-"""' HIP CENTER
B8
HIP_RIGHT | HIP_LEFT
KMEE_RIGHT [O KMEE_LEFT
< £) ANKLE RIGHT, AMKLE LEFT{ \}"“
FOOT_RIGHT FOOT LEFT

Figure 2.3 Joint layout used by Microsoft Kinect's skeletal tracking system

Kinect’s architecture proved revolutionary for its time. The use of the various hardware
shown in Figure 2.3 such as the IR Emitter, Color Sensor, IR Depth Sensor, and Tilt
Motor allowed the Kinect to capture accurate per-pixel values along with depth
measurements even in low light shown in 3.3.2.C. These technologies were critical in
early gesture-based games like Dance Central and inspired later research in
human-computer interaction.

IR Emitter Color Sensor

IR Depth Sensor

Tilt Motor

Micr-::rphc:ne Array

Figure 2.4 Kinect Architecture

3

Thee Kinestk Seraon m fonnecied snd neady

Figure 2.5 3D Depth Image in Grayscale

Microsoft also provided developer tools like Kinect Studio, which recorded and replayed
interaction data to aid debugging and testing. Applications could be built rapidly in WPF
using templates like KinectSeletonApplication which visualized tracked joints as ellipses
on a canvas. The Kinect SDK also introduced features like seated mode, facial tracking,
and support for close-range users via Near mode, allowing for more flexibility in design.

Kinect's legacy lives on in modern computer vision applications. Its model of joint-based
tracking and use of multimodal input (pose + voice) laid the groundwork for today’s
Al-powered body tracking with neural networks and webcams. While contemporary
systems like MediaPipe Pose and OpenPose no longer require specialized hardware,
the principles they followed, path estimation, joint modeling, and user-centric design,
remain deeply rooted in Kinect's innovations.

2.2.7 Just Dance

Another notable application of CV in gaming is Just Dance, a franchise by Ubisoft
launched in 2009. Originally designed for the Nintendo Wii using motion controllers,
newer iterations supported Kinect and PlayStation Camera input. Just Dance evaluates
player movements by comparing their captured silhouette or skeleton data to
pre-recorded dance routines. While this system simplifies feedback into generalized
“good” or “perfect” scores, it creates an accessible experience that emphasizes fun over
precision. This trade-off reflects a key challenge in CV-based gameplay: achieving a
balance between technical accuracy and player enjoyment.

2.2.8 Pokemon Go

In recent years, computer vision has enabled augmented reality (AR) games such as
Pokémon GO, which use smartphone cameras and visual SLAM (simultaneous
localization and mapping) to blend virtual content with the real world. Although AR relies
more heavily on scene understanding than pose detection, these games showcase how
CV can extend interactivity beyond fixed hardware setups.

2.2.9 Mediapipe

More recently, open-source tools like MediaPipe have democratized access to pose
estimation algorithms that were once exclusive to large tech companies. With these
libraries, developers can extract real-time body, hand, and facial landmarks using only a
standard webcam. This has fueled a resurgence in indie games and research projects
that explore motion-based gameplay and accessibility.

2.2.10 Chunithm

Similarly, Chunithm, a rhythm game by Sega, relies on advanced hand-tracking through
infrared or camera-based systems to detect fast, complex gestures like air slashes or
upward swipes. While not all the technical details of these proprietary systems are
public, they demonstrate how CV, including neural network-based recognition and 3D
hand pose estimation, has become viable even in high-speed arcade settings.

2.3 Project Goals

The main goal of this project is to design and build a self-contained arcade-style rhythm
game system that includes both the physical dance pad hardware and the video game
software. The system will feature a 9-panel layout to allow for expanded gameplay
mechanics. In addition to foot-based input, the game will include a computer vision
system that evaluates the player’s expressive movement using a live camera feed. Our
goal is to create an experience that rewards both precision and performance, allowing
players to interact with the game through both steps and body movements. The final
product will include a working rhythm game engine, a functioning pad-to-PC interface,
custom chart creation tools, and vision-based style scoring. While the game will initially
run on a standard PC or laptop, we are also exploring the feasibility of deploying the full
system on an embedded platform such as the NVIDIA Jetson Nano. This would allow
for a compact, standalone arcade unit, and is being considered as a stretch goal
pending performance testing and thermal optimization.

2.3.1 Hardware Goals

e Basic:

- develop 9-direction interactive arrow pads with RGB LED feedback for
each direction by the end of SD1

- ensure responsive and accurate force detection using force-sensing
resistors (FSRs) with an input response time of 5-10 ms

- design and integrate a 3-4 mm aspherical lens that maximizes image
sharpness (= 3 pixels/mm) across a 2.9 m x 2.9 m field of view while
taking the depth of field (DOF) into account.

- implement a synchronized time-multiplexed near-infrared (NIR) LED
illumination system with <17 ms full-zone cycle to reduce power usage
and prevent flicker.

e Advanced:

- reduce total PCB computational processing time by at least 30%
compared to SD1 prototype using firmware optimizations.

- re-design pad layout to reduce total surface area by at least 15%
compared to the SD1 prototype, by SD2 midterm demo, to enhance
portability without sacrificing gameplay accuracy

- select and implement LED beam angles and placement configurations
that achieve 285% measured brightness uniformity with minimal
shadowing across all four zones during optical subsystem testing in SD2.

e Stretch:
- integrate Bluetooth or Wi-Fi module to enable wireless data transmission
between pads and central controller
- create a foldable dance pad prototype with < 3cm thickness when
collapsed, suitable for storage or transport

reduce input latency to 1-5 ms through optimized ADC sampling and FSR
circuit tuning.

run the entire software stack on an NVIDIA Jetson Nano, including vision,
scoring, and display modules

2.3.2 Software Goals

e Basic:

develop a rhythm game engine tailored to the 9-panel pad layout with
frame rates = 60 FPS
implement a user interface for local song selection and post-game
performance feedback
run MediaPipe-based pose estimation locally on the system (e.g., Jetson
nano or PC)

Implement pose-based scoring by triggering bonus effects for matching
target poses during gameplay

e Advanced:

include a song editor feature that allow users to generate custom
choreography charts

load a library of at least 6 preloaded songs at launch for player testing
improve pose detection robustness with optimized frame filtering and
landmark smoothing (e.g., 95% detection confidence)

e Stretch:

add player login with global leaderboard integration via secure backend
launch a mobile app that syncs gameplay statistics, average scores, and
playtime

add configurable startup modes (Arcade/Home) with different default Ul
settings and gameplay speeds

2.4 Project Objectives

To guide the development of the STEPS system, we have defined a set of core
objectives that encompass the design, fabrication, and integration of the project's
primary hardware and software subsystems.

e Hardware Fabrication:
Construct a durable 9-panel dance pad using custom-designed Printed Circuit
Boards (PCBs) and Force-Sensing Resistors (FSRs). The system will be
engineered to achieve a low-latency input response time of less than 10ms and
communicate with a host PC as a standard USB HID device. Each panel will be
pressure-sensitive and capable of reliable input across a wide range of user
weights and step patterns. Additional hardware considerations include robust

10

electrical connections, compact sensor mounting, and modularity to allow for
maintenance or upgrades.

Game Engine Development:

Build a complete rhythm game from the ground up in the Godot engine. This
software will feature a user interface for song selection and score display, a
system to load custom song charts, and immediate audio-visual feedback for
player accuracy. The game will be designed to accommodate various skill levels
and allow user-generated content to be imported easily. The engine will support
real-time synchronization between the music, step inputs, and lighting cues to
maximize immersion

Optical System Design:

Engineer an integrated imaging system for reliable player tracking in various
ambient lighting conditions. This involves selecting an appropriate camera sensor
and designing a custom aspherical lens system, supported by a time-multiplexed
850nm infrared (NIR) LED illumination array. The optical design will focus on
achieving consistent visibility of the player's body regardless of external lighting
or room setup, ensuring that the pose estimation system operates with high
fidelity in dynamic play environments.

Vision-Based Scoring:

Implement a real-time "Style Score" system using a pose estimation library like
MediaPipe to extract a player's full-body keypoints. This system will detect a
series of predefined expressive poses and award bonus points to reward player
creativity beyond simple timing accuracy. The vision module will operate in
tandem with the core game logic to ensure low-latency detection and minimize
false positives. Future work will explore machine learning-based classification to
expand the range of recognized poses and improve robustness.

Full System Integration:

Integrate all hardware and software components into a cohesive and functional
prototype. This final objective involves verifying that the physical dance pad
seamlessly controls the game engine and that the pose detection system
provides accurate input to the scoring logic, delivering a stable and engaging
user experience ready for demonstration. A core emphasis will be placed on
minimizing system latency, ensuring modular connections between components,
and supporting long-duration playtesting to evaluate durability and feedback
performance.

11

2.4.1 Prototype illustration/Blueprint

Legend
] Ground

#s Analog signals
Force Sensitive

Power Input
(110V - 230V AC)

+

Resistor
ES - ACto DC
LED Array HUSB-C s

Figure 2.6 Electronic Blueprint Prototype lllustration

Figure 2.7 Dance Pad 3D Model

Figure 2.8 Conceptual Rendering of the S.T.E.P.S Gameplay Environment.
A visual overview of the player-camera interaction and LED frame layout. The LEDs are
shown as white for illustration purposes, but the final system uses 8560nm NIR LEDs.
This illustration is not to scale and is intended for conceptual understanding.

13

AR0234 RGB Global Shutter
Sensor with 3.2 mm
Aspherical Lens

NIR lllumination: 850 nm
LEDs (top, bottom, sides)

~87.6° Horizontal FOV
(AR0234 + 3.2 mm lens)

29mx29m
Dance Pad

6ft working distance Components not to scale

Figure 2.9 Schematic layout of the optical and illumination subsystems. The AR0234
camera with a 3.2 mm lens captures a ~87.6° FOV across the 2.9 m x 2.9 m tracking
zone from 6 ft away. Surrounding 850 nm NIR LEDs illuminate the scene to support
reliable pose detection.

2.5 Project Features and Functionalities

The primary goal of this project is to develop a working proof-of-concept for a new kind
of dance rhythm game that integrates physical input with computer vision-based
expression tracking. The focus is on delivering a functional and demonstrable system
that includes three core components: a responsive 9-panel dance pad, a custom rhythm
video game engine, and a vision system that scores player movement based on style
and expressiveness.

At the hardware level, the dance pad will use Force-Sensing Resistors (FSRs) beneath
each panel to detect foot pressure and translate those inputs into digital signals via a
microcontroller. The signals are interpreted as button presses in-game, allowing for
responsive gameplay. Each panel will also include LED lighting to provide immediate
visual feedback based on the game’s state and player interaction. While

14

commercial-grade materials like metal panels or acrylic overlays would be ideal, the
immediate priority is to build a stable, functional pad using accessible prototyping
materials to prove the input system works reliably.

The software side features a rhythm game engine tailored to the 9-direction input
system. Players will step on directional pads in sync with music, guided by scrolling
notes on screen. The game will evaluate the player’s timing accuracy and display
scores at the end of each round. Alongside traditional gameplay scoring, a connected
camera system will assess the player’s full-body movement using a pose detection
library. Based on the amplitude, variation, and expressiveness of the player’s dance, the
game will generate a secondary “style score.” This adds a creative and engaging layer
of performance evaluation beyond pure timing.

A basic user interface will allow for song selection, score displays, and navigation
through the system. A chart editor tool will also be included, enabling users to import
music and design their own charts either manually or with the help of automatic
generation tools.

Although not essential to the proof-of-concept, we also envision the long-term possibility
of turning the system into a self-contained arcade-style unit. Features like a cabinet
enclosure, co-op integration, player logins, and online leaderboards are considered
stretch goals that could be implemented later with more resources. The project is
designed with scalability in mind: the core technology should work independently, while
leaving room for future upgrades to polish and deploy the system as a full commercial
or open-source product.

2.5.1 Style Score and Pose-Based Evaluation System

In addition to the traditional timing-based score system, our game introduces a novel
secondary metric known as the Style Score, which rewards players for striking
expressive and clearly defined poses at designated times during gameplay. Unlike
freeform dance scoring, our system focuses on detecting static full-body poses that can
be consistently recognized by a pose estimation algorithm.

We intentionally limit the scope of detection to distinct, predefined poses that can be
reliably tracked in real-time using a single camera. This approach improves detection
accuracy and reduces computational load while still encouraging expressive movement.

During gameplay, specific pose prompts will appear, similar to freestyle moments or
bonus sections. These pose prompts will be displayed in a small icon area on screen
during designated freestyle sections, giving players 2—3 seconds to match the target
pose. If the player strikes the correct pose at the right time, they are awarded bonus
points to their Style Score. This incentivizes physical creativity and rewards players who
engage more fully with the visual performance aspect of rhythm games.

15

Each pose is chosen based on ease of detection, body separation, and iconic visual
silhouette (all poses are mirrored when displayed to the player):

Muscle Man Pose: Both arms raised as if you’re flexing biceps’

What? Pose: Both arms out as if you don’t know about something

Point Up Pose: Left arm behind the head, pointing out to a plane

Tough Guy Pose: Crossed arms

Samurai Pose : Legs wide apart, one hand near waist as if gripping a katana,
other arm pointing forward or out.

e Mantis Pose: Right arm raised in front of the chest, left bent above the head,
and right leg up with knee up

Each pose will have keypoint thresholds that define acceptable angles and positions
such as a certain limb being within a range of 20 degrees from the desired state. This
will be validated using a pre-trained MediaPipe/OpenPose[5] model.

Point Up Pose

Tough Guy Pose Samurai Pose Mantis Pose

Figure 2.10 Images of the tentative poses (modeled using PoseMy.Art)

16

2.6 Requirements and Specifications

2.6.1 Parts Specification Requirements Table

Table 2.1 List of all of the project’s engineering requirements and specifications.
Highlighted in yellow are specifications that will be demonstrated

Parameter

Active power consumption

Lighting response time

Pose identification accuracy

= 95% detection accuracy for body/limb motion

Input response time ~5-10 ms
Dance Pad

Size ~34.5x34.5x2.5in
Weight <30 Ibs
Cost < $300

Printed Circuit Boards (PCB)
Size <10 cm?

Display

Frame rate = 60 fps
Resolution = 1280 x 720 pixels

Refresh rate

2120 Hz

Dance Pad Panels

Size ~10 in?
FSRs input response time ~5-10 ms
FSRs force range input 0-100 N

RGB LEDs PWM duty cycle

~10%-30%

17

Camera Module

Full-body coverage area = 2.9 m field width at 1.83 m distance, ensures
full-body coverage with no tracking cutoff

Power Supply Unit

Input voltage from wall power via | =212V
AC-DC converter

Output power > 60W (=5A @ 12V)

LED Panel

illumination uniformity of the player | =290% uniformity across player body, achieved
by supplemental 850 nm illumination regardless
of ambient light

Player visibility (shadow coverage) | Full Body at 1m

2.6.2 Notes on Specifications

Overall System
For active power consumption, most typical dance arcade machines are around
100-200 watts, so for our system we aim to have set our limit to 200 watts.

Dance Pad

For increased portability and potentially affordability and maintenance, a size of about
34.5 x 34.5 x 2.5 inches and weight of at most 30 Ibs would be optimal for the player
and owner of the pad.

Printed Circuit Board (PCB)
As mentioned before in goals, we want to minimize the size of the PCB as much as we
can while also making it easy enough to check for errors on the design.

Display

Whether it be a PC or game system, the system requirements are the same. In order to
run our custom made game, the system must be able to run at least 60 frames per
second, have a resolution of at least 1280 * 720 pixels, and have a refresh rate of at
least 120 Hz.

Dance Pad Panel

Response time from the FSRs must be almost instantaneous and this is very important
because rhythm games are dependent on timing of when commands are hit. There
should be little to no latency when pressing the pads and triggering the FSRs.

18

Moreover, the amount of force applied needed to trigger the FSRs must be 0-100 N so
that even the smallest amount of pressure should be enough to send a signal back to
the MCU.

Camera Module

To meet 295% tracking accuracy and full-body coverage, the camera must maintain
sufficient resolution, wide FOV (= 400 mm at 1m), and minimal distortion. This ensures
consistent player visibility without cutoff or blind spots.

Power Supply Unit
The pad is powered through a wall power cable which should be more than sufficient

enough to power the pad. The input voltage of at least 12 V is required to efficiently
power the whole pad, and we aim to output a power of at least 1.65 watts.

LED Panels

To ensure the player is always fully illuminated regardless of body position or
movement, the LED panels must maintain illumination uniformity of = 90% and deliver
sufficient brightness to achieve full body visibility at a 1-meter distance.

2.7 Hardware Block Diagram
PSU
[[Wal in‘ar]—'[Eﬁﬁ-.-rg?er l]

' LED PCE

L

Aspherical

lars

Ragulator

LED Panels

{0 upLen f Up-rognt [Downdeft | | Down-Right |
| Step Input : | Stap Input : | Stap Input | | Step Input |
I I
I I I I
: : : : : | : |
| |RGBLEDE [+— | | |RGELEDS [«+— | ||RGELEDs +— | !|rGa LEDS | +—
\ | | i |
R E B # I\ _______ s I'\-. _______ S
STTTT T A ST ST ST Ty ST T T
| Up | Ledi | Center | Right Step | Drorem
: Step Ingud : Sheg Input : Slep Inpul : Inguut : Step Ingul
1 1 | 1]
[i I I i

b1
	I I		
	I I		
1 I 1 I I I I I 1 I
I [} I I I
!|reBLEDS [+— ||RGELEDS|+—| ||RGELEDS|+—| ||REBLEDS|+—| ||ReBLEDS||
1 I 1 I I] I] 1 I

Figure 2.11 Hardware Block Diagram showcasing work distribution and major
components of the design

19

2.8 Software Block Diagram

Legend: []| Andres []| Christopher

Gameplay

Finish

|EE.33" ||Med|um|| Hard |

ame
Start

Chart Creator

Mote

|Musbc || Gameplay

Figure 2.12 Software Block Diagram of Gameplay, Menu, and Chart Creator

20

2.9 House of Quality

Correlation irection irabili T
T T strong positive A maximize O
T weak positive W minimize O 1

O no correlation

| weak negative OX11 O
| | strong negative OXIXOXTH

Engineering
Requirements =
E
[
G
(1]
(a]
Marketing G
Requirements -
o
5

Direction of Desirability

-1 Cost of Materials

Affordability

() |« |Pad Input Latency

p—
—_—

Consistency

—
—

— O S .1 Pad Dimensions

Durakbility

(O O || =—| P |Pose Identification Accuracy

Easy Installation

(1O |=|=—| P |[Camera Lens Horizontal FOV

o]l®)

—_—

—_—
—_—
—

Reliability

—_—
—

—
—

O |— 1O |—|=—| P> |LED Panel llumination Uniformity
O —r O O —— -‘ Camera Lens Resolution

il dldldldl
O

O

Maintenance

—— O —_— | — 4 Active Power Consumption

O

Targets for Engineering
Requirements

=38x3Bx2in

=1 mm

o 95“.-‘.';;
= 90%

2 1830 mm

= 200W

=10 ms

= %400

Figure 2.13 House of Quality

21

3. Research
3.1 Embedded Systems

To integrate embedded systems into our STEPS platform, we require a dedicated
computing component. The two most suitable options are a microcontroller unit (MCU)
or a single-board computer (SBC). Each has its strengths and tradeoffs, but only one is
better suited to execute the functionality required for our project.

SBCs offer significantly higher processing power than MCUs, making them capable of
running full operating systems, graphical interfaces, and multitasking. However, the
tradeoff is that they also consume more power, require more complex infrastructure,
and lack real-time response by default. Meanwhile, MCUs are optimized for fast,
real-time control, which is critical for rhythm game input responsiveness. They are also
cheaper, easier to wire, and consume less power, making them ideal for precise button
and LED control. Therefore, we take a deeper dive into both options to evaluate which
is most optimal for our dance pad design.

3.1.1 MCU vs SBC

MCUs are designed for task-specific control, particularly those that require low latency
and real-time response, such as reading sensor data or controlling actuators. In our
system, for input detection, an MCU would allow for minimal system latency, which is a
critical factor for timing accuracy in rhythm games.

MCUs also offer faster boot-up times and simpler circuit integration, making them easier
to debug and more reliable during development. Most MCUs include a large number of
GPIO pins, many with PWM support, which makes them especially suitable for handling
LEDs and button inputs with minimal delay. Their hardware simplicity aids in easier
troubleshooting and faster hardware prototyping. However, MCUs typically require
low-level programming (e.g., in C or C++) and are not capable of natively handling
advanced Ul, graphics, or audio features. As a result, we would require external
modules if we were to implement these into our design.

In terms of cost, most MCU chips cost under $10, making them ideal for scalable,
low-cost embedded designs. If the board is damaged or needs revision, the low cost of
replacement makes development more forgiving.

In contrast, SBCs offer significantly higher processing power and are well-suited for
applications involving graphical interfaces, audio, or wireless communication. They run
full operating systems, typically Linux-based, and can be programmed using high-level
languages like Python or Java, which simplifies software development.

However, their non-deterministic response time, due to OS-level multitasking, makes
them less reliable for real-time input detection. This could introduce latency or jitter in

22

detecting panel hits, affecting the gameplay experience. SBCs also have longer boot
times, higher power consumption, and are generally more complex to integrate into
custom PCB designs. On top of that, SBCs typically cost between $35-$60, which
increases development risk if the board is damaged or requires replacement.

3.1.2 MCU is the Better Option... But Why?

While neither MCUs nor SBCs are perfect in every category, MCUs are the more
optimal choice for our dance pad design due to their fast and predictable response
times, lower power consumption, smaller footprint, and significantly lower cost. As
shown in Table 3.1 below, the MCU excels in the areas most critical to our engineering
and marketing goals, such as system responsiveness, efficiency, and affordability, as
previously outlined in Figure 2.9 House of Quality.

To meet cost targets, we must use components that are low-cost yet reliable, and MCUs
typically cost under $10, making them ideal for both prototyping and scalable
production. Power consumption is another key concern, especially since our system will
run multiple FSRs and RGB LEDs simultaneously, and MCUs are optimized for energy
efficiency, unlike SBCs which consume more power even when idle. Real-time
performance is especially critical for a rhythm-based game, where millisecond-level
delays can affect gameplay. MCUs provide immediate input handling and low-latency
output control, which are difficult to achieve on SBCs running multitasking operating
systems without extensive tuning.

While SBCs may offer advantages like better multimedia processing or easier
development with high-level languages, they introduce longer boot times, higher costs,
and non-deterministic behavior, making them less suitable for a system where precision
and timing matter most. MCUs, on the other hand, are straightforward to integrate,
faster to initialize, and allow for fine-grained control over every component in the
system.

Overall, MCUs give us the performance and reliability needed for fast input detection,
smooth LED animations, and efficient control, all while keeping costs, power, and
complexity well within our project’s constraints.

Table 3.1 Comparison table between MCUs and SBCs using their features

Feature Microcontroller (MCU) Single Board Computer (SBC)
Processing Power v

Real-Time Response v

Design Complexity v

23

Coding Complexity v
Power Consumption v
I/0 Handling v
Ul Support v
Boot Time 4
Cost 4

3.1.3 Arduino

Arduino is a series of open-source microcontroller boards designed for ease of use in
both hardware and software. They are especially popular in the prototyping and
hobbyist community due to their beginner-friendly development environment (Arduino
IDE), and extensive library support for 1/O, sensors, LEDs, and communication
protocols. Arduino boards typically use AVR-based microcontrollers, although some
variants use ARM cores. In this section, we look at three of the most fitting boards for
our dance pad design: Arduino Uno, Arduino Mega 2560, and Arduino Leonardo.

One of Arduino’s most iconic boards is the Arduino Uno, which uses the 8-bit
ATmega328P microcontroller. It runs at a clock speed of 16 MHz, with 32 KB of flash
memory, 2 KB of SRAM, and 1 KB of EEPROM. The Uno includes 14 digital I/O pins (6
with PWM support) and 6 analog inputs (ADC). It's widely supported and extremely
simple to program and wire, making it a go-to for prototyping. However, it lacks native
USB HID support, which means it cannot act as a USB joystick or keyboard without
external USB-serial bridging. For our dance pad, the Uno would fall short on both ADC
and PWM channels unless additional multiplexing components were added.

One of Arduino’s higher-end boards is the Arduino Mega 2560, which features the
ATmega2560 microcontroller. Like the Uno, it runs at 16 MHz, but includes significantly
more memory: 256 KB of flash, 8 KB of SRAM, and 4 KB of EEPROM. It provides 54
GPIO pins, 15 PWM channels, 16 ADC channels, and 4 UART serial ports, making it
highly capable of handling our dance pad’s inputs. The Mega does not support native
USB HID, but its I/0O abundance makes it ideal for wiring-heavy applications.

Another one of Arduino’s boards is the Arduino Leonardo, which uses the ATmega32U4
microcontroller. It also runs at 16 MHz, with 32 KB of flash memory, 2.5 KB of SRAM,
and 1 KB of EEPROM. It provides 20 GPIO pins, 7 PWM channels, and 12 ADC
channels. Its standout feature is native USB HID support, allowing it to behave like a
USB keyboard or joystick, a feature perfect for our design. While it offers fewer 1/O pins

24

than the Mega, it still covers our minimum requirements, and any shortfall can be
handled using external components.

Table 3.2 Arduino boards and their features comparison table

Feature Arduino Uno Arduino Mega 2560 | Arduino Leonardo
Main MCU ATmega328P ATmega2560 ATmega32U4
Clock Speed 16 MHz 16 MHz 16 MHz

Flash Memory 32 KB 256 KB 32 KB

SRAM 2 KB 8 KB 2.5 KB
EEPROM 1 KB 4 KB 1 KB

GPIO Pins 14 54 20

PWM Channels 6 15 7

ADC Inputs 6 16 12

USB Communication | serial-to-USB serial-to-USB native USB
USB HID Support none none included
Serial Ports (UART) 1 4 1

Active Power Moderate Moderate-High Moderate
Consumption

MCU Chip Cost ~$3 ~$8 ~$4

25

3.1.4 Teensy

Teensy is a powerful and compact microcontroller board series developed by PJRC.
While slightly less common than Arduino in beginner projects, Teensy is widely used in
performance-critical embedded systems due to its speed, USB capabilities, and
real-time performance. Most Teensy boards use ARM Cortex-M cores, which were
specifically designed for embedded applications to offer high energy efficiency and low
cost. All Teensy boards also support native USB HID, making them excellent for
applications that require low-latency input handling, such as rhythm games. In this
section, we explore four Teensy models: Teensy 2.0, Teensy 3.2, Teensy LC (Low Cost),
and Teensy 4.1.

The oldest version of them all is the Teensy 2.0 (released in 2009). Out of our other
Teensy options, Teensy 2.0 is the only one that doesn’t use an ARM core. Instead,
much like the Arduino Leonardo, it uses an ATmega32U4 8-bit automatic voltage
regulator (AVR). This means that the Teensy 2.0 has almost the same exact
specifications as an Arduino Leonardo. For instance, both run at a clock of 16 MHz and
include 32 KB of flash memory, 2.5 KB of SRAM, 12 ADC channels, and USB HID
support. It provides 25 GPIO pins, which is slightly more than the Leonardo’s 20.
Despite its age, Teensy 2.0 remains a lightweight and reliable choice for simple USB
input devices. However, it lacks the processing power and memory needed for
advanced LED animations or real-time multitasking.

Released in 2014, the Teensy 3.2 offers a major leap in performance over the 2.0. It
features an MK20DX256VLH7 MCU with a 72 MHz ARM Cortex-M4 processor,
supporting both DSP instructions and hardware floating point. It includes 256 KB of
flash memory, 64 KB of SRAM, and 34 GPIO pins. The Teensy 3.2 supports 21 analog
inputs (ADC) and 12 PWM outputs, and unlike Teensy 2.0, the ADC is 13-bit (not 16-bit
as sometimes misreported). It supports USB HID, has robust NeoPixel support
(including DMA-based LED control), and is powerful enough to handle real-time step
detection, LED animations, and game communication simultaneously. It offers an
excellent balance between performance, GPIO availability, and price, making it a strong
candidate for mid-level embedded designs like our design.

Introduced in 2015, the Teensy LC is a budget-friendly alternative that still offers modern
features. It uses the MKL26Z64VFT4 MCU, based on a 48 MHz ARM Cortex-M0O+
processor. It comes with 62 KB of flash memory, 8 KB of SRAM, and 27 GPIO pins. It
includes 13 analog inputs and 10 PWM outputs, and it supports USB HID. While not as
fast as the 3.2, the Teensy LC still outperforms Teensy 2.0 in nearly all areas. It does
not support DMA for NeoPixel LED control, meaning LED animations may add CPU
overhead. Still, its low cost and decent GPIO make it a practical option if budget is a
major constraint.

The most powerful board in the series, Teensy 4.1, was released in 2020 and uses the

MIMXRT1062 MCU with an ARM Cortex-M7 processor running at a blazing 600 MHz. It
includes 1 MB of SRAM, 8 MB of QSPI flash memory, and supports external PSRAM or

26

flash via expansion pads. It features 55 GPIO pins, 18 analog inputs, and up to 35 PWM
outputs, with USB High-Speed (480 Mbps) support and full native USB HID. Unlike
Teensy 3.2 or LC, Teensy 4.1 also supports cache, branch prediction, and complex
multitasking, making it ideal for fast input response, dynamic LED control, and
interfacing with multiple peripherals simultaneously. While the ADC is only 12-bit and
the analog pin count is slightly lower than Teensy 3.2, the vast processing power and
memory make Teensy 4.1 a top-tier choice.

Table 3.3 Teensy boards and their features comparison table

Feature Teensy 2.0 Teensy 3.2 Teensy LC Teensy 4.1

MCU Chip ATmega32U4 | MK20DX256VLH7 | MKL26Z64VFT4 | MIMXRT1062

Structure 8-bit AVR ARM Cortex-M4 ARM ARM
Cortex-MO+ Cortex-M7

Clock Speed | 16 MHz 72 MHz 48 MHz 600 MHz

Native USB 12 Mbps 12 Mbps 12 Mbps 480 Mbps

Speed (full speed) (full speed) (full speed) (high speed)

Flash 32 KB 256 KB 62 KB 8 MB

Memory

SRAM 2.5 KB 64 KB 8 KB 1024 KB

GPIO Pins 25 34 27 55

PWM 7 12 10 35

Channels

ADC Inputs 12 (12-bit) 21 (13-bit) 13 (12-bit) 18 (12-bit)

Active Power | Low Moderate Low High-Very High

Consumption

MCU Chip ~$4 ~$6-9 ~$2-4 ~$7-11

Cost

27

3.1.5 Raspberry Pi Pico (RP2040)

Although there are multiple other Raspberry Pi series like Raspberry Pi 4 and
Raspberry Pi Zero, they are not efficient enough to be considered for our design. Due to
the fact that most other Raspberry Pi use Linux which can make them heavier on power
and boot time, less reliable when it comes to real-time responses, harder to interface
with timing-sensitive components, and more complex to integrate into our dance pad’s
PCB. The series we want to look at, however, is the Raspberry Pi Pico series.

The Raspberry Pi Pico is a microcontroller, not a general-purpose computer, that uses
its own microcontroller chip, the RP2040. The RP2040 is a dual-core Cortex MO+
microcontroller chip that’'s known for being affordable while having a high performance.
Because the RP2040 is made of bare silicon, it comes with a QFN-56 package, which
supports compact PCB design and high-speed operation, allowing it to have good
thermal dissipation, short lead lengths for better signal integrity, and maintain a compact
size for better use of space. However, having the QFN-56 package also makes
soldering into the PCB board challenging if done by someone with little to no
experience.

The Raspberry Pi Pico runs at a clock speed of 133 MHz, making it well-suited for
performance-intensive tasks. Much like the Teensy boards, Pico also supports USB
HID, though it requires software implementation via libraries like the Pico SDK or
CircuitPython, and no external components or converters are needed for HID
communication. However, while the Pico provides 26 GPIO pins and 16 PWM channels,
it includes only 3 12-bit ADC channels, which is insufficient to directly read analog
signals from all 9 FSR-based pads. To support more analog inputs, external analog
multiplexers or ADC chips would be needed. In terms of memory, the Pico offers 2 MB
of flash and 264 KB of SRAM, which is significantly more than typical Arduino boards
and even some Teensy models. Overall, Raspberry Pi Pico’s RP2040 is a highly
affordable chip (~$1) capable of handling complex tasks at high speeds, while
maintaining low to moderate active power consumption. However, using this chip will
require external components, such as analog multiplexers for more ADC inputs, for our
design to be fully functional.

3.1.6 ESP32

The ESP32 is a series of low-cost, low-power system-on-a-chips (SOCs). MCU chips
used by ESP32 modules typically cost around $1-$3. What makes the ESP32 different
from traditional microcontrollers like AVR or RP2040 is that most ESP32 modules have
Wi-Fi and/or Bluetooth capabilities. In this section, we analyze and compare the ESP32
(WROOM-32), ESP32-S2, ESP32-S3, and ESP32-C3.

The ESP32-WROOM-32 is one of the earliest and most commonly used modules in the
ESP32 series. It features a dual-core 32-bit Xtensa LX6 processor and supports both
Wi-Fi and Bluetooth Classic + BLE. Despite being one of the older models, it can still
run at up to 240 MHz, making it capable of handling performance-heavy tasks. It comes
with 520 KB of SRAM and 4 MB of flash memory by default, though variants with 8 MB

28

or 16 MB of flash are also available. The chip provides up to 34 GPIO pins, 16 PWM
channels, and 18 ADC channels, which is sufficient for our design. However, one major
limitation is that it does not have native USB HID support without additional hardware.
To use the WROOM-32 in a USB-connected setup, we would need to add an external
USB-to-HID bridge chip or pair it with another microcontroller that supports USB HID
natively. Therefore, unless we design the DDR pad to be fully wireless, it may be more
practical to use another ESP32 variant that can support native USB HID directly.

The ESP32-S2 improves on the WROOM-32, most notably, by adding native USB
support. It features a single-core Xtensa LX7 processor that can run up to 240 MHz,
and, by default, includes 320 KB of SRAM and 4 MB of flash memory. Like other ESP32
modules, it supports Wi-Fi, but unlike the original WROOM-32, it does not support
Bluetooth. The chip provides up to 43 GPIO pins, 16 PWM channels, and 20 ADC
channels, which is slightly more compared to WROOM-32. What sets the ESP32-S2
apart is its native USB OTG support, which allows it to act as a USB HID device, such
as a gamepad or keyboard, without requiring any external USB bridge or extra MCU.
The main drawback is its single-core design, which limits multitasking performance
compared to dual-core models, but this tradeoff may be acceptable if real-time
responsiveness is properly managed.

The ESP32-S3 builds upon the capabilities of the S2 and is arguably the most
feature-rich variant in the ESP32 family for the design we’re aiming to achieve. It retains
native USB HID support, much like S2. It uses a dual-core Xtensa LX7 processor
running at up to 240 MHz, with 512 KB of SRAM and 128 KB of RTC memory, offering
more headroom for handling concurrent tasks such as sensor polling, LED animations,
and USB communication. The S3 has 45 GPIO pins, 8 PWM channels, 20 ADC
channels, and it expands functionality with BLE 5.0 support (though it lacks classic
Bluetooth). The ESP32-S3 is especially suitable for performance-demanding
applications that require both USB connectivity and multiple analog inputs, making it
one of the best choices for a wired dance pad built around a single microcontroller.

The ESP32-C3 is a compact, low-cost MCU in the ESP32 family that trades raw
performance for simplicity and power efficiency. It features a single-core 32-bit RISC-V
processor running at up to 160 MHz, with 400 KB of SRAM and 4 MB of flash memory.
While some variants of C3 can support external flash chips up to 16 MB, some don't,
like the ESP32-C3-WROOM-02U. One of its most attractive features is its inclusion of
native USB 2.0 support, enabling it to function as a USB HID device without requiring
external USB-to-serial hardware. However, C3 only supports 22 GPIO pins, 6 hardware
LED PWM channels, and 6 ADC channels, which makes it unsuitable for reading all of
our dance pad’s inputs directly without the use of an analog multiplexer or external ADC
chip. It does support BLE 5.0, though it lacks classic Bluetooth. Overall, while it's not as
powerful or feature-rich as the S2 or S3, the ESP32-C3 is a budget-friendly option for
our designs, especially if analog input limitations can be mitigated with external circuitry.

29

Table 3.4 ESP32 boards and their features comparison table

Feature ESP32- ESP32-S2 ESP32-S3 ESP32-C3
WROOM-32

MCU Chip ESP32-DOWD | ESP32-S2 ESP32-S3 ESP32-C3

Structure Dual-core Single-core Dual-core LX7 | Single-core
Xtensa LX6 LX7 RISC-V

Clock Speed 240 MHz 240 MHz 240 MHz 160 MHz

Flash Memory |4-16 MB 4-16 MB 4-16 MB 4-16 MB (some)

SRAM 520 KB 320 KB 512 KB 400 KB

(128 KB RTC) | (128 KB RTC)

GPIO Pins 34 43 45 22

PWM Channels | 16 16 8 6

ADC Inputs 18 20 20 6

Native USB None USB OTG USB OTG USB 2.0

Wi-Fi Yes Yes Yes Yes

Bluetooth Classic + BLE | None BLE 5.0 BLE 5.0

Active Power | High Moderate-High | High Moderate

Consumption

MCU Chip Cost | ~$2-3 ~$2 ~$2.50-3 ~$1.50-2

30

3.1.7 STM32

STM32 is a series of 32-bit ARM Cortex-M microcontrollers. They’re known for having
long-term reliability, rich peripheral sets (i.e. ADC, USB, timers, etc.), native USB
support in most of its variants, strong real-time performance, great power efficiency, and
full support in IDEs like STM32CubelDE, Keil, PlatformlO, and Arduino (for some
variants). We will be looking at the most common and fitting variant from each of the
following STM32 families: STM32F1, STM32F4, STM32F0, and STM32L4.

One of STM32F1’s most common MCU chips is the STM32F103C8, also known as the
"Blue Pill" chip. It features a 72 MHz Cortex-M3 processor, 64 KB of flash memory, and
20 KB of SRAM. It also has 37 GPIO pins, 15 PWM channels, and 10 ADC channels,
which is sufficient for our design requirements. STM32F103C8 supports native USB
Full-Speed, which can be configured for HID communication using STM32CubeMX and
the HAL libraries. However, being an older generation chip, it has limited memory for
larger LED effects or buffered inputs. Still, it remains a cost-effective and capable option
for our design.

One of STM32F4’s most common MCU chips is the STM32F407VG, which is a
high-performance microcontroller based on the 168 MHz Cortex-M4 core with DSP and
FPU support. It includes 1 MB of flash memory and 192 KB of SRAM. It also has 82
GPIO pins, 3 ADCs (12-bit) that can handle up to a total of 16 multiplexed input
channels, and supports up to 17 timers, several of which can generate PWM signals
with up to 4 channels per timer. It also supports both Full-Speed and High-Speed USB,
with High-Speed USB requiring an external PHY (Physical Layer). Overall, the
STM32F407VG is ideal for advanced dance pad designs aiming for high
responsiveness, complex LED patterns, or additional input features. The tradeoff is
higher cost, larger size, and slightly more power consumption.

One of STM32F0’s most common MCU chips is the STM32F072RB, which features a
48 MHz Cortex-MO processor, 128 KB of flash memory, and 16 KB of SRAM. It includes
51 GPIO pins, 18 PWM channels, and 16 ADC channels (12-bit), making it a capable
and low-power choice for handling our dance pad inputs and driving RGB LEDs.
STM32F072RB supports native USB Full-Speed, and can be configured as a USB HID
device using STM32CubeMX and the HAL libraries. While it lacks advanced processing
features like DSP or FPU, its simplicity, low-cost, low power consumption, and USB
support make it a great option for our design.

One of STM32L4’s most versatile MCU chips is the STM32L476RG, which uses an 80
MHz Cortex-M4 core with both DSP and FPU support. It comes with 1 MB of flash
memory and 128 KB of SRAM, offering plenty of space for real-time processing and
buffering. The STM32L476RG provides up to 76 GPIO pins, 24 PWM channels, and 16
ADC channels (12-bit), allowing for extensive input reading and precise LED control. It
also supports native USB Full-Speed and can operate in low-power modes, making it
suitable for our design as it helps improve both performance and energy efficiency. The

31

main trade off is its slightly higher cost, but its extensive peripheral set and low-power
capabilities make it a strong candidate for our design.

Table 3.5 STM32 common MCU chips from different variants comparison table

Feature STM32F1 STM32F4 STM32F0 STM32L4

MCU Chip STM32F103C8 | STM32F407VG | STM32F407VG | STM32L476RG

Structure Cortex-M3 Cortex-M4 Cortex-MO Cortex-M4

Clock Speed | 72 MHz 168 MHz 48 MHz 80 MHz

Flash 64 KB 1 MB 128 KB 1 MB

Memory

SRAM 20 KB 192 KB 16 KB 128 KB

GPIO Pins 37 82 51 76

PWM 15 ~17 timers 18 24

Channels each <4 PWM

ADC Inputs 10 16 16 16

Native USB | FS USB FSUSB+HS |FSUSB FS USB
(w/ PHY)

Active Power | Moderate High Very Low Very Low

Consumption

MCU Chip ~$2 ~$7-10 ~$1.50-2 ~$4-5

Cost

32

3.1.8 MCU Selection

After comparing a wide range of microcontroller options, the Arduino Leonardo is the
most optimal choice for our dance pad system based on its balance of cost-efficiency,
simplicity, and native USB HID support. While it doesn'’t offer the same raw processing
power or extensive I/O capacity as higher-end MCUs like Teensy 4.1 or STM32F4
variants, the Leonardo meets all of our core requirements while keeping system
complexity low.

Arduino Leonardo is powered by an 8-bit ATmega32U4 processor running at 16 MHz,
with 32 KB of flash memory, 2.5 KB of SRAM, 30 I/O pins (7 PWM), and 12 ADC inputs.
It natively supports USB HID, which allows it to act as a keyboard or joystick, crucial for
our game’s real-time step detection. Compared to other Arduino boards like Uno or
Mega, Leonardo is better suited to our needs due to this built-in USB functionality,
eliminating the need for external USB-to-serial converters.

Although the Leonardo offers fewer GPIO and less memory than boards like Teensy 4.1
or ESP32, its performance is still sufficient for handling 9 FSR sensors and RGB LEDs,
especially with efficient software handling and power management. Additionally, its
popularity in DIY projects and compatibility with a wide variety of Arduino libraries make
it an accessible and well-documented choice for rapid development and testing.

Overall, Arduino Leonardo strikes the right balance between functionality, ease of use,
and affordability, making it a practical and reliable core controller for our dance pad
system, especially for single-player setups with limited hardware demands.

3.2 Dance Pad Sensor

In order for the pad to send signals to the game, we need sensors that can detect
physical input and convert it into electrical signals for the microcontroller to process.
There are four common sensor types we can consider for this project: force-sensing
resistors (FSRs), load cells, strain gauges, and piezoelectric sensors. We compare
them based on cost, accuracy, complexity, size, durability, and their ability to detect both
hold steps and taps. First, we’'ll explore what each sensor is, how it works, and how it
meets the project’s engineering requirements.

3.2.1 Force Sensing Resistors

Force-sensing resistors (FSRs) are sensors that change resistance in response to
applied pressure. They are commonly used in DIY and custom dance pad projects
because they are inexpensive, easy to wire, and can be constructed using accessible
materials like Velostat or copper tape. FSRs are also thin, flexible, and lightweight,
making them ideal for compact pad designs.

33

Though FSRs offer quick response times and simple analog interfacing (via a voltage
divider and an ADC pin), they lack precision and can show non-linear output and signal
drift over time. Poor placement or surface inconsistency can lead to dead zones or
inconsistent detection. Additionally, they are sensitive to temperature and humidity,
affecting their long-term reliability. Overall, FSRs are a low-cost, simple, and responsive
solution for detecting taps and light pressure in dance pads, but may not be ideal for
applications requiring high durability or accuracy over time.

3.2.2 Load Cells

Load cells are force transducers that measure weight or applied force by detecting
mechanical deformation, typically using internal strain gauges. They output either a
millivolt signal (analog) or, in some designs, a digital signal after amplification. Load
cells are known for their high accuracy, excellent stability, and long-term durability.

Their downside lies in their higher complexity: they require a stable mechanical
mounting, precise calibration, and amplification circuitry (such as an HX711 module) to
interface with a microcontroller. Load cells also tend to be more expensive and bulky,
which may be a constraint for slim pad designs.

In summary, load cells are ideal for high-precision, arcade-grade dance pads where
accuracy and reliability are top priorities, but they involve more cost, bulk, and circuit
complexity than other options.

3.2.3 Strain Gauges (Raw)

Strain gauges are sensing elements that detect strain (deformation) in a material. This
is typically a foil or wire pattern that changes electrical resistance when stretched or
compressed. Unlike load cells, raw strain gauges don’t measure force directly, but rather
the strain on a structure, which can then be correlated to force.

When bonded carefully to structural parts of the pad, strain gauges can be very precise
and customized for specific points of interest. However, they are also extremely
sensitive to environmental noise and temperature, and they require precise installation,
bridge circuits (e.g. Wheatstone bridge), and amplification to produce usable signals.

While strain gauges can be affordable, they are technically complex, and not
ready-to-use out of the box. They are best suited for custom mechanical frames where
advanced integration is possible and where precision and internal structural feedback
are desired.

3.2.4 Piezoelectric Sensors

Piezoelectric sensors use the piezoelectric effect to convert mechanical stress into
electrical charge. When pressure or impact is applied, the crystal inside the sensor

34

generates a voltage spike. Piezo sensors are exceptional for detecting fast impacts,
such as dance pad taps, and can distinguish between light and hard hits due to their
high sensitivity and fast response.

However, they cannot detect sustained pressure or holds, as they only respond to
changes in force, not constant force. They are also prone to false triggers from
vibration, footstep echoes, or mechanical noise, and they require careful physical
isolation or dampening. On the hardware side, they are easy to wire (typically needing
just a series resistor and ADC input), though voltage spikes may require clamping
diodes to protect the MCU.

Overall, piezoelectric sensors are affordable, fast, and ideal for games focused solely
on tap detection, but they are not suitable for designs requiring hold step input or highly
stable measurements.

3.2.5 Break Beam Sensors

Break beam sensors are non-contact optical sensors that detect the presence or
absence of an object by interrupting a beam of infrared (IR) light between a transmitter
and a receiver. When the beam is unbroken, the sensor outputs a steady signal; when
the beam is interrupted (e.g. by a footstep), the signal changes, allowing the
microcontroller to detect an input event. Break beam sensors are very fast, have high
sensitivity, and are not affected by pressure wear, making them highly durable.

However, they cannot detect how hard or long the player is pressing, so they are not
capable of reading analog force or hold steps. Alignment between the emitter and
receiver must also be precise, and ambient IR sources (like sunlight or reflective
surfaces) can interfere with the sensor’s reliability. Additionally, their installation typically
requires mounting hardware and unobstructed space under or around the panel.

Overall, break beam sensors are a reliable and low-maintenance solution for detecting
quick taps or triggered events, but they lack the analog depth needed for
pressure-sensitive gameplay and cannot detect holds, making them best suited for
tap-only rhythm games or basic input triggering.

3.2.6 Dance Pad Sensor Selection

Upon analyzing all contending sensors for our project, the most optimal choice is clearly
the force-sensing resistor (FSR). FSRs are the most commonly used sensors in both
DIY dance pad builds and even in many modern arcade dance machines. They are
affordable and reliable components that offer fast response times, are simple to wire
(usually requiring just a voltage divider circuit), and can detect both types of inputs
required by our system: quick impacts and sustained press-and-hold steps.

35

Their flexibility and thin profile also make them ideal for fitting under lightweight or
low-profile panel designs. As long as our physical construction ensures proper
placement and force distribution, we can effectively minimize their main drawbacks:
potential dead zones, non-linearity, and slightly lower accuracy compared to load cells
or strain gauges. Another major advantage of FSRs is cost. Being relatively
inexpensive, they allow for cost-effective replacements if damaged during testing or
extended use, keeping long-term maintenance costs low. This aligns with our project's
goals of affordability and maintainability.

FSRs can be easily wired and pair well with Arduino Leonardo. Much like Arduino
Leonardo, the FSR’s simplicity contributes to lower system complexity, enabling us to
focus more on refining input responsiveness, game logic, and RGB LED feedback.
Overall, FSRs offer the best balance of performance, simplicity, and cost for our dance
pad sensor needs.

Table 3.6 Dance Pad Sensors and their features comparison table
(Legend: 11 = very high; 1 = high; M = moderate; | = moderate/low; || = very low)

Feature FSRs Load Cells | Strain Gauges | Piezoelectric | Break Beam
(Raw) Sensors Sensors
Size il 1 il l M
Cost H) | 1 !
Response 1 1 1 1 (impact) ™
Time
Accuracy ! ™ ™" 1 (impact) !
Complexity L 0 ™" M !
Durability ! " M i} 7
Impact Input v v v v v
Sustain Input v v v

36

3.2.7 Force Sensing Resistor Selection

Now that we have decided on using FSRs, what’s the most optimal way to integrate
them into our design? There are two ways we can implement the functionality of FSRs
into our dance pad:

1. Using the hard physical component FSR Model 408 (300mm length)

2. DIY with conductive material (e.g., copper or aluminum) + Velostat

The FSR Model 408 is a commercially manufactured force-sensing resistor that is
300mm long and designed to offer reliable force measurements in a slim, flexible form.
It comes with a pressure-sensitive strip and integrated terminals, making it easy to wire
into an analog input. Because it is pre-calibrated and professionally manufactured, it
ensures consistency in pressure sensitivity and response across all pad panels. Its
reliable construction reduces the risk of false triggers, drift, and dead zones. However,
the downside is its higher cost, with each unit typically ranging from $15 to $30
depending on the supplier. In our case, we are looking into Interlink Electronics: $27.93
subtotal + $9.99 shipping = $37.92 total cost. Using nine of these for a full pad setup
can add significant expense to the overall budget. Fortunately, we already have five in
hand, but we still need to purchase 13 more. It’s also slightly less customizable in terms
of shape and contact area compared to DIY designs.

The DIY method involves using copper or aluminum tape as conductive contacts with
Velostat or other pressure-sensitive films in between. This approach offers high
flexibility and full control over the size, shape, and placement of each sensor. It's
significantly more cost-effective, for instance, components like Velostat and copper tape
are inexpensive and widely available. However, DIY FSRs require careful assembly and
testing, as inconsistency in spacing, adhesion, or material thickness can lead to issues
like input dead zones or uneven sensitivity. Additionally, they may degrade faster over
time compared to commercial FSRs and require more trial and error to calibrate
effectively.

Given our goals of reliability, performance consistency, and minimizing potential issues
like dead zones or calibration errors, the FSR Model 408 is the optimal choice for our
dance pad system. While the DIY conductive method offers more flexibility and lower
upfront cost, it also introduces variability and requires more effort in calibration and
maintenance. The FSR Model 408 provides a plug-and-play experience with consistent
force detection across all panels, reducing uncertainty during development and
improving long-term durability. This makes it a better fit for our design, where input
timing accuracy and sensor stability are critical for gameplay. The investment in pre-built
FSRs will ultimately pay off in performance and ease of integration.

37

Table 3.7 FSR Model 408 and DIY Conductive Material + Velostat comparison table
(Legend: 1 = high; M = moderate; | = moderate/low)

Feature FSR Model 408 (300 DIY Conductive Material +
mm) Velostat

Cost per Sensor 1 ($15-%$30) 1 (~$3)
Customizability ! 1
Assembly Effort ! 1
Reliability 1 M
Sensitivity Consistency 1 M

Dead Zone Risk ! M
Durability 1 I

Ease of Replacement M 0

3.3 Communication Protocols

3.3.1 External Communication Protocols

The Pad PCB communicates with the PC using the USB (Universal Serial Bus)
interface. This connection allows for two-way communication: the pad sends input
signals from the FSRs to the game on the PC, while the game may send output
feedback such as score or event triggers back to the pad, which can influence the RGB
LED animations on the dance pad. This is the only part of the system where a formal
communication protocol needs to be noted, since it involves a standardized method of
digital data exchange between two systems. Other parts of the system either use simple
analog sensing (e.g., FSRs) or digital HIGH/LOW signaling (e.g., to toggle the LED
PCB), which do not involve a full protocol.

The communication over USB is handled using a standardized communication protocol,
typically either USB CDC (Communication Device Class) or USB HID (Human Interface
Device). CDC presents the pad as a virtual serial (COM) port, allowing for
general-purpose data exchange. HID, on the other hand, is commonly used for devices
like keyboards, mice, and game controllers, and it allows input data (such as button
presses or sensor values) to be transmitted to the PC with low latency and without

38

requiring custom drivers. For our design, we are going to use USB HID because we
want our pad to act like a keyboard for the PC.

3.3.2 Internal Communication Protocols

In any distributed embedded system, a reliable communication protocol is the essential
link that allows multiple microcontrollers and peripherals to work together as a cohesive
whole. A communication protocol establishes a set of rules for data exchange, defining
everything from the physical number of wires required to the format of the data packets
being sent. For the modular 9-tile dance pad, the choice of protocol is a critical design
decision. It must efficiently connect the central "Master Controller" board to the nine
smart “Input Tiles”, enabling the master to poll for sensor data and send lighting
commands with minimal latency and wiring complexity. This section explores the
technology behind three of the most common embedded communication protocols:
UART, SPI, and 12C compare their strengths and weaknesses and select the most
appropriate protocol for the project's specific requirements.

3.3.2.1 UART (Universal Asynchronous Receiver-Transmitter)

UART is a simple and widely used protocol for point-to-point serial communication. It is
"asynchronous" because it does not use a shared clock signal to synchronize the
sender and receiver. Instead, both devices must be pre-configured to operate at the
same data rate, known as the "baud rate."

Communication requires only two wires, a Transmit (TX) pin on one device connects to
the Receive (RX) pin on the other. This allows for full-duplex or two-way communication.
Data is transmitted in a "frame," which consists of a start bit to signal the beginning of a
transmission, 5 to 9 data bits, an optional parity bit for error checking, and one or two
stop bits to signal the end of the frame. The idle state of the line is high voltage, and the
start bit is a transition to low, which allows the receiving device to synchronize its timing
to the incoming data.

Suitability for Project

While UART is simple and reliable for connecting two devices, it is fundamentally a
point-to-point protocol. It is not designed to support multiple devices on the same bus
without additional complex hardware and software to manage addressing and bus
contention. To connect the Master Controller to nine separate Tile Boards, it would
require nine separate UART interfaces on the master, which is not practical. Therefore,
UART is unsuitable for this project's multi-device bus architecture.

3.3.2.2 Inter-Integrated Circuit (12C)
I2C is a synchronous, multi-master, multi-slave communication protocol designed

specifically for connecting multiple devices on a single, shared bus. It achieves this with

39

remarkable efficiency, requiring only two wires, SCL (Serial Clock): The clock signal,
typically generated by the master, SDA (Serial Data): The bidirectional data line.

Unlike SPI, 12C does not use individual slave select lines. Instead, it uses an addressing
scheme. Every device on the 12C bus must have a unique 7-bit address. When the
master wants to communicate, it first sends out the unique address of the slave it wants
to talk to. All devices on the bus hear this address, but only the one whose address
matches will respond. This allows a single master to communicate with up to 112
different slave devices using the same two wires.

Suitability for Project

I2C is an excellent protocol for the dance pad's internal bus architecture. Its primary
advantage is the ability to connect all nine "Input Tile" boards to the "Master Controller"
using just two wires (SCL and SDA), plus power and ground. This drastically simplifies
the wiring harness and reduces the required pin count on the master controller when
compared to SPI. While its data speed is lower than SPI's, it is more than sufficient to
handle polling sensor data and sending lighting commands across the nine tiles without
introducing any noticeable latency. Given that the |2C protocol was specifically designed
for this type of multi-peripheral, intra-system communication, it is the best engineering
choice for this project.

3.3.2.3 Serial Peripheral Interface (SPI)

SPI is a synchronous, full-duplex, master-slave communication protocol known for its
very high speed. It is "synchronous" because the master device generates a clock
signal that is shared by all devices on the bus, ensuring perfect data synchronization.

A standard SPIl bus requires four wires: SCLK (Serial Clock): The clock signal
generated by the master. MOSI (Master Out, Slave In): The line the master uses to
send data to slaves. MISO (Master In, Slave Out): The line the slaves use to send data
back to the master. SS (Slave Select): The master uses a separate SS line for each
slave. To talk to a specific slave, the master pulls that slave's SS line low.

This individual slave select line is a key feature of SPI. While it guarantees there are no
address conflicts, it also means that connecting to many slaves requires many extra
pins on the master device.

Suitability for Project

SPI's primary advantage is its speed, which is often overkill for an application like a
dance pad where data packets are small and infrequent. Its main disadvantage for this
project is the high pin count. To connect to nine Tile Boards, the Master Controller would
need nine dedicated Slave Select pins in addition to the three shared bus lines (SCLK,
MOSI, MISO). While the ATmega32U4 has enough pins, this creates a complex and
cumbersome wiring harness. For these reasons, SPI is a viable but not the optimal
choice.

40

3.3.3 Comparison and Final Selection

Table 3.8 Comparison table of communication protocols

Feature UART SPI 12C
Pin Count 2 (per device) 4 + (N slaves) 2 (total)
Speed Low Very High Moderate

Multi-Device Support | No (Point-to-Point) [Yes (High pin count) | Yes (Address-based)

Complexity Low Moderate Moderate

Possible but not

Project Suitability Unsuitable deal

Optimal

The analysis shows that I2C is the optimal communication protocol for the dance pad
project. Its primary advantage is its ability to connect all nine Tile Boards to the Master
Controller using only two wires for data and clock, plus two for power. This dramatically
simplifies the wiring harness, reduces the pin count on the master, and makes the entire
system more modular and scalable. While its data speed is lower than SPI's, it is more
than fast enough to handle the polling of sensor data and the sending of lighting
commands without introducing any noticeable latency. The 12C protocol was specifically
designed for this type of intra-system communication, making it the best engineering
choice for linking the “Master Controller” to its nine “Input Tile” peripherals.

3.4 Analysis of 12V Power Supplies for Embedded Systems

3.4.1 The Critical Role of the Power Supply

In any electronics project, the power supply is the foundational component upon which
all other systems depend. Its primary function is to convert electrical energy from a
source, typically a high-voltage AC wall outlet, into a stable, low-voltage DC form that is
usable by sensitive electronic components like microcontrollers, sensors, and LEDs. For
the 9-tile dance pad project, the power supply is not merely an accessory; it is a critical
subsystem that must reliably power both low-current, noise-sensitive logic and
high-current, noise-generating lighting systems. A poorly chosen or inadequately
designed power supply can lead to a host of problems, including system instability,
inaccurate sensor readings, and even permanent damage to components. This paper
will explore the technologies behind common 12V power supplies, compare their

41

suitability for the project, and recommend a specific type to ensure robust and reliable
operation.

3.4.2 Project Power Requirements

The dance pad project presents a mixed-load challenge. The system requires a single
12V DC input, which must then be conditioned and distributed to serve two distinct
functions. The primary load is the high-current 12V infrared (IR) LED strip that
surrounds the television display. This high-power load is essential for the computer
vision system and will draw approximately 2.8 Amps. The second load is the low-current
controller logic, which includes the custom "Power Hub" PCB and its 5V regulator. This
regulator powers the main "Master Controller" board and the nine "Tile Board"
microcontrollers, representing a low-power, noise-sensitive system that requires a very
clean and stable power source.

The total estimated current draw from the 12V source is approximately 3.3 Amps.
Therefore, a power supply with a rating of at least 4-5 Amps is required to provide a
safe operating margin.

3.4.3 Power Supply Technologies

There are three primary categories of AC-to-DC power supplies that could be
considered for this project: unregulated, linear regulated, and switch-mode.

Unregulated Power Supplies

An unregulated power supply is the simplest form of AC-to-DC conversion. It consists of
a transformer to step down the AC voltage, a full-wave bridge rectifier to convert the AC
to pulsating DC, and a large filter capacitor to smooth the pulsations into a relatively
steady DC voltage. While this design is simple, inexpensive, and reliable due to its low
component count, its output voltage is not regulated. It will vary significantly with
changes in the AC line voltage and the amount of current being drawn. The output also
contains significant "ripple," which is leftover AC pulsation that can interfere with
sensitive electronics. Due to the lack of regulation and high ripple, this type of supply is
unsuitable for the project, as it would be impossible to reliably power the
microcontrollers and could cause the LEDs to flicker or dim under load.

Linear Regulated Power Supplies

A linear supply begins with the same components as an unregulated supply but adds a
linear regulator. This regulator acts like a variable resistor, constantly adjusting itself to
burn off excess voltage as heat, resulting in a very stable and clean output voltage. The
primary advantage of this technology is its extremely low noise and ripple, making it
ideal for powering highly sensitive analog circuits, audio equipment, and laboratory
instruments. However, it is also extremely inefficient. The process of dissipating excess
voltage as heat is incredibly wasteful. For this project's power level, a linear supply

42

would be massive, heavy, and would generate a tremendous amount of heat, making it
completely impractical. While the clean output is desirable, the poor efficiency and large
size render it unsuitable for this application.

3.4.4 Switch-Mode Power Supply (SMPS) Technology
How They Work

A Switch-Mode Power Supply (SMPS) is a much more modern and complex design that
achieves very high efficiency. Instead of burning off excess voltage as heat, it works by
rapidly switching the input voltage on and off. The process begins by rectifying the
incoming AC voltage to high-voltage DC. A high-frequency switch, typically a MOSFET,
then chops this DC into a series of pulses thousands of times per second. These
high-frequency pulses are fed into a very small, lightweight transformer to be stepped
down. The output of the transformer is then rectified and filtered to produce the final,
stable output voltage. A feedback control circuit constantly monitors the output and
adjusts the switching to keep the voltage perfectly stable, regardless of changes in load
or input voltage.

SMPS Block Diagram

Reservoir
Rectifier Capacitor

Switch
20V

50Hz => Filter —/‘—‘\)——— — # —

AC Fuse

ac-dc

Transformer

Snuchmg Fuse OQutput
“—> Regulating > Rectifier=> Filter —T—%\A——

Elements

i

Feedback

Control Isolat‘inn -
Circuit Barrier <
dc-ac ac-dc

© Electrothinks

Figure 3.1 SMPS Block Diagram

43

12V 5A Switched-Mode Power Supply (SMPS) Circuit Diagram

A . Qutput
Input . 24 148007 W 4 ! . 3 el Do
) 54 v AT wise A\ R h

el
-
}

© Electrothinks 1

Figure 3.2 12V 5A SMPS Circuit Diagram
Characteristics

The primary advantage of an SMPS is its high efficiency, typically between 80-95%,
which means very little energy is wasted as heat. The use of a high-frequency
transformer allows it to be much more compact and lightweight than a linear supply of
the same power rating. Furthermore, most SMPS units can accept a universal AC input,
making them usable worldwide. The main drawback is the complexity of the internal
design and the electrical noise (EMI/RFI) generated by the high-frequency switching
process. However, a well-designed SMPS includes internal filtering to minimize this
noise.

Suitability for Project

The SMPS is highly suitable for this project and aligns with the industry standard for
powering most modern consumer electronics. Its ability to efficiently convert electrical
power with minimal heat generation makes it ideal for a system like a dance pad, which
requires reliable and consistent power delivery to multiple components including
sensors, microcontrollers, and LED panels. The compact physical footprint of an SMPS
also allows it to be easily integrated into the slim and portable housing typical of
arcade-grade or DIY dance pad designs.

Moreover, SMPS units support a wide input voltage range and are capable of providing
stable output voltages, which is particularly important in a project where fluctuating
power could lead to erratic sensor behavior or missed inputs. While SMPSs do
inherently generate electrical noise due to their high-frequency switching, this drawback
is mitigated by the inclusion of filtering and decoupling capacitors within the project’s
custom-designed PCBs. These capacitors help suppress voltage ripple and
electromagnetic interference, ensuring the rest of the circuit operates smoothly.

44

3.4.5 Comparison and Selection

Table 3.9 Comparison table of the three types of power supplies in the context of the
dance pad project’s specific needs

Unregulated

Linear Regulated

Switch-Mode Supply

Fesiie Supply Supply (SMPS)
Voltagg Poor Excellent Excellent
Regulation
Efficiency N/A (Poor) Very Poor (~30-40%) |Excellent (~80-95%)
Size & Weight Large & Heavy l_\|/eeg/yLarge & Very Compact & Lightweight
Heat Generation |Moderate Very High Low
Output . . o
Noise/Ripple High Very Low Low (with proper filtering)
Cost Low High (for this power Low to Moderate

level)
Project Suitability [No No Yes

Form Factor

Within the SMPS category, there are two main form factors to consider. The first is an

open-frame power supply, which is a bare PCB designed to be mounted inside a larger
enclosure. While valid, this option requires careful handling to avoid electrical shock and
is not ideal for a student project.

The second, more appropriate option is an external enclosed power supply, commonly
known as a "power brick." This is the familiar black box used for laptops and other
consumer electronics. Its high-voltage components are safely enclosed in a plastic
case, and these units come with pre-approved safety certifications like UL and CE,

which is a major advantage. It offers a simple, plug-and-play solution that requires no

high-voltage wiring by the user. Reputable brands also include excellent internal filtering
to minimize noise output.

45

Final Selection

Based on this analysis, the recommended power supply for the 9-tile dance pad project
is a 12V DC, 5A External Enclosed Switch-Mode Power Supply. The 12V output
matches the voltage requirement of the IR LED strip, while the 5A current rating
provides a safe operating margin above the calculated 3.3A total system load. The
external enclosed form factor offers the best combination of safety, convenience, and
reliability for this application.

3.4.6 Conclusion and Implementation

The selection of a power supply is a critical design decision that impacts the reliability,
safety, and performance of an entire embedded system. After analyzing the technical
characteristics of unregulated, linear regulated, and switch-mode power supplies, it is
clear that the Switch-Mode Power Supply (SMPS) is the only practical and effective
solution for the 9-tile dance pad project.

The project's mixed-load requirement, powering both a high-current LED system and
sensitive, low-current microcontrollers, is best served by the high efficiency and
excellent regulation of an SMPS. While the potential for electrical noise from an SMPS
is a valid concern, this is effectively mitigated by the robust power filtering and
decoupling designed into the project's custom PCBs. The ferrite beads, bulk filtering
capacitors, and local decoupling capacitors on the Power Hub and Master Controller
boards are specifically designed to handle the type of noise an SMPS produces,
ensuring clean power for all sensitive components.

The final recommendation is to procure a high-quality, 12V, 5A external enclosed
SMPS ("power brick") from a reputable manufacturer. This choice leverages the
benefits of SMPS technology while delegating the complexities and safety concerns of
high-voltage AC-to-DC conversion to a pre-certified, off-the-shelf component. This
allows the project to focus on its core innovation: the custom PCB design for the
modular tile system and the master controller. By making this selection, the project is
built upon a foundation of stable, efficient, and safe power, ensuring the best possible
chance for a successful outcome.

3.5 Analysis of LED Driver Technologies for High-Power
lllumination

3.5.1 Introduction to LED Drivers

Light Emitting Diodes (LEDs) have become the standard for modern lighting
applications due to their high efficiency, long lifespan, and fast response times.
However, unlike simple incandescent bulbs, LEDs are semiconductor devices that
cannot be connected directly to a voltage source. They require a specialized circuit,
known as an LED driver, to operate correctly and reliably. The driver's primary function

46

is to regulate the power supplied to the LED, ensuring it receives a consistent forward
current to produce stable light output without being damaged.

For the 9-tile dance pad project, the LED driver is a critical component of the computer
vision subsystem. It must power a high-current 12V infrared (IR) LED strip that provides
consistent illumination for the player-tracking camera. Furthermore, the driver must
allow for precise brightness control via Pulse-Width Modulation (PWM) to adapt to
varying ambient light conditions, ensuring the computer vision system remains robust
and accurate. This paper will explore the fundamental technologies behind LED drivers,
compare different circuit topologies, and select the most appropriate design to meet the
project's technical and academic requirements.

3.5.2 Fundamentals of LED Operation and Dimming

An LED's brightness is directly proportional to the forward current flowing through it, not
the voltage across it. If the voltage is too low, no current flows and no light is produced.
If the voltage is too high, the current can increase exponentially, leading to rapid
overheating and catastrophic failure. Therefore, the core task of any driver is to provide
a constant, controlled current. There are two primary methods for controlling an LED's
brightness analog dimming and Pulse-Width Modulation (PWM):

Analog Dimming

This method involves simply reducing the constant current flowing through the LED.
While simple, it has significant drawbacks. As the current changes, the color
temperature of the LED can shift, which is particularly problematic for applications
requiring consistent light quality. It is also less precise and can be inefficient.

Pulse-Width Modulation (PWM) Dimming

This is the superior and more common method. The driver switches the LED on and off
at a frequency too high for the human eye or a camera to perceive. The LED is always
driven at its optimal forward current, but the duty cycle (the percentage of time the LED
is on versus off) is varied. A low duty cycle results in a dim appearance, while a high
duty cycle results in a bright appearance. This method maintains a consistent color
temperature and allows for very precise, linear brightness control, making it the ideal
choice for the project's IR illumination system.

3.5.3 Comparison of LED Driver Circuit Topologies

There are several ways to design a circuit that can drive and dim an LED strip. These
range from simple resistive limiters to complex integrated circuits.

Simple Resistor Driver

The most basic approach is to place a resistor in series with the LED strip to limit the
current. While functional for single, low-power indicator LEDs, this method is entirely

47

unsuitable for high-power applications. The resistor would need to be very large to
dissipate the excess power, generating a massive amount of waste heat. More
importantly, it provides no regulation; as the LEDs heat up, their electrical characteristics
change, causing the current to drift and the brightness to become unstable.

Linear Constant-Current Driver

A linear driver uses a transistor (like a BJT or MOSFET) operating in its linear region to
act as a variable resistor, ensuring a constant current flows to the LEDs. This design
provides a very clean, noise-free output. However, like a linear voltage regulator, it is
extremely inefficient. It controls the current by burning off all excess power as heat. For
the project's ~3A load, a linear driver would become dangerously hot and waste a
significant amount of energy, making it an impractical choice.

Simple MOSFET Switch (Low-Side Driver)

This was the initial design considered for the project. An N-Channel MOSFET is used
as a simple switch on the low-side (ground connection) of the LED strip. The PWM
signal from a microcontroller turns the MOSFET on and off. This circuit is simple,
inexpensive, and can handle high currents. However, it provides no current regulation.
The brightness of the LEDs will still vary if the main 12V supply voltage fluctuates, and it
does not protect the LEDs from potential over-current situations. While functional, it
lacks the robustness and precision required for a high-performance system.

3.5.4 Dedicated Switching (Buck) LED Driver IC

The most advanced and professional solution is to use a dedicated Integrated Circuit
(IC) designed specifically for driving LEDs. These ICs are complete Switch-Mode Power
Supplies (SMPS) on a chip, configured as constant-current buck converters.

How They Work: A buck converter efficiently steps down voltage by switching a
MOSFET on and off at a high frequency, using an inductor and diode to smooth the
output. An LED driver IC takes this a step further. It includes a feedback loop that
monitors the current flowing to the LEDs via a small, external sense resistor. The IC
constantly adjusts the switching duty cycle to ensure the output current remains
perfectly stable, regardless of changes in input voltage or temperature. These ICs also
have a dedicated input pin for a PWM signal, which is used to precisely control the
dimming of the constant-current output.

This topology combines the high efficiency of a switching regulator with the precise

current control needed for high-power LEDs. It is the most robust, efficient, and
feature-rich solution.

48

3.5.5 Comparison and Selection

A comparison of the viable driver technologies clearly points to the dedicated IC as the

superior choice.

Table 3.10 Comparison table of driver technologies

Feature Simple MOSFET Switch [Dedicated Driver IC (e.g., MP24894)
Current None Excellent (Constant Current)
Regulation

Efficiency High MERAhligh

Brightness Fair (Varies with Excellent

Stability \Voltage)

Component Count| Low High

Design i

Complexity Low High

Protection None Often built-in (e.g., thermal shutdown)
Features

While a simple MOSFET switch is functional, it does not meet the project's need for
precise and stable illumination for the computer vision system. Furthermore, it does not
satisfy the academic requirement to integrate a complex reference circuit.

D1 'K
6V—6\(/)'S - Wy
= cn Rsense *M
©
T :
— °
nd
IN RS
MP2489 =
J‘ O—— 1 ENIDIM

SW g

G

=
[w)

I

Figure 3.3 MP2489 LED Driver Circuit Diagram

49

The dedicated switching LED driver IC is the optimal solution. It provides the high
efficiency and precise constant-current control necessary for reliable performance. The
selection of the MP24894 for this project is a direct implementation of this technology.
By building the reference circuit for this IC, the project demonstrates a significant level
of design complexity, directly addressing the guidelines to "integrate existing reference
circuit designs to meet all design requirements." This approach results in a
professional-grade, robust, and highly functional LED driver that is perfectly suited to
the demands of the dance pad's computer vision system.

3.6 Imaging Subsystem

3.6.1 Monochrome vs RGB Sensor

Selecting the appropriate camera sensor for the S.T.E.P.S vision system was an
important decision in the beginning stages of the design process. Technically a RGB or
monochrome sensor could be used. Each sensor type has distinct advantages and
weaknesses. Monochrome sensors are known for producing high-contrast and
high-resolution images due to the absence of color filter arrays.[11] Which can improve
clarity and reduce light loss. These sensors are particularly effective in applications
where edge detection, structure analysis, or low-light imaging is critical. They also
generate smaller data sizes which reduces computational load. These factors are all
very promising when considering a major goal of the system is to minimize the
computational load and processing time of the vision system.

However, the pose estimation model used in this system is MediaPipe. MediaPipe’s
system is optimized for RGB input as it relies on color information to identify and track
body landmarks accurately, using patterns in hue and saturation to distinguish between
limbs and background.[10] Since RGB sensors capture color images in a format that
mirrors human visual perception, these sensors are the best to use for Al models that
interpret motion and orientation. In the S.T.E.P.S system, visual feedback is provided to
the player via the RGB LED arrays placed in the dance pads. While the motion is
captured using the FSR sensors, pose estimation is captured purely through visual
tracking. In this case, a monochrome sensor would introduce ambiguity in differentiating
the background from the player due to no color differentiation.Therefore, the benefits
from using a RGB sensor outweigh those of the monochrome sensors in this
application. Despite their slightly higher data rates and lower per-pixel sensitivity. The
deficiencies in image contrast or sharpness introduced by the RGB filter array are
mitigated through diligent and carefully designed lens system and image scale
optimization. This comparison is summarized in table 3.11.

50

Table 3.11 RGB vs. Monochrome Sensor Comparison

Attribute Monochrome Sensor RGB Sensor

Image Contrast & Higher (no color filter Lower due to color filter

Sharpness array) array (CFA)

Light Sensitivity Higher(no CFA, more light | Lower (CFA reduces
per pixel) incoming light)

Data Size Smaller (single channel) Larger (3 channels: R, G,

B)

Computational Load Lower (less data to Higher (more data to
process) process)

Al Compatibility Not supported by Fully supported and
MediaPipe (requires RGB | optimized for MediaPipe
input)

Background Differentiation | Poor (no color distinction Good (color cues help
between limbs, separate limbs and
background) surroundings

Suitability Not suitable due to Selected for pose tracking
MediaPipe incompatibility | and Al model compatibility

3.6.2 Camera Comparison

Several camera modules were considered to balance resolution, frame rate, and price.
The chosen camera needed a pixel pitch suitable for resolving ~ 1mm features, a frame
rate of at least 30 FPS for smooth gameplay, a cost preferably under $100 to fit system
goals, and compatibility with the 850nm illumination. Originally, the Arducam AR0234
USB 2MP global shutter camera was identified as a strong candidate. Its 3.0 um pixel
pitch, RGB output, and use of no IR-cut filter makes it ideal to properly sense the NIR
illumination. The global shutter also significantly reduces motion blur, which is important
during fast player movement.[29]

Through more research, a lower-cost alternative using the same AR0234 sensor was
found through SVPRO. The SVPRO 2MP Global SHutter USB camera module offers
similar specifications, including global shutter operation, M12 lens compatibility, and
RGB output, but for a better price. Its lower cost makes it more ideal for the prototype
phase. However, it may have reduced support and documentation compared to the
Arducam-branded product. The Raspberry Pi HQ camera was also considered because
of its modular CS-mount compatibility, but its rolling shutter and low frame rate made it
less suitable for pose estimation. Overall, the SVPRO AR0234 offers a balanced

51

trade-off between pixel size, cost, and motion capture. The specifications for these
candidate cameras are summarized in Table 3.12.

Table 3.12 Camera comparison table

Camera Pixel Pitch(um) | Frame Rate Price (USD) Shutter Type
(FPS)

Raspberry Pi 1.55 20 $53.78 Rolling
HQ (IMX477)

Arducam 3.0 60 $109.99 Global
AR0234 Global
Shutter

SVPRO 3.0 60 $76.99 Global
AR0234 Global
Shutter

3.6.3 Lens Comparison

A wide field of view and short focal length were prioritized to capture the entire 114" x
114’ dance pad area from approximately 1.8m away. Research into wide-angle M12
lenses focussed on models with a horizontal field of view near 93°, focal lengths around
3 mm, minimal distortion, sufficient depth of field, and a price under or as close to $100
as possible.[12] These lenses are well-suited for compact vision systems, and the M12
mount allows easy replacement and adjustment during prototype testing.

Although the SVPRO AR0234 camera module includes pre-installed wide-angle M12
lens, alternative 3 mm M12 aspherical lenses will be evaluated to verify critical
requirements such as distortion, IR transmission, and image sharpness for the 850 nm
active illumination. This ensures the final lens selection supports consistent MediaPipe
landmark detection and meets the project’'s performance targets. Commercially
available aspherical M12 lenses with focal lengths around 3 mm were identified as the
best balance of wide-angle coverage and low distortion. Aspherical designs help reduce
spherical aberration and maintain sharpness across the entire field of view, which is
important for MediaPipe pose tracking and consistent landmark detection.[12] Although
a fully custom-designed aspherical lens could in theory optimize every optical
parameter, the cost and fabrication complexity made that impractical for this prototype.
Therefore, an off the shelf aspherical wide-angle M12 lens will be the baseline option.

After evaluating multiple M12-mount aspherical lenses compatible with the sensor, the

Commonlands CIL034 was the most appropriate. This lens has a 3.2 mm focal length
with approximately 87° HFOV on the AR0234. This field of view allows the camera to

52

capture the full 114” x 114” dance pad area from a working distance of 1.8m without
excessive mounting height or tilt. Its aspherical design supports reduced geometric
distortion, which is beneficial for MediaPipe tracking, while remaining compatible with
typical project constraints on cost and mechanical mounting. The depth of field is also
not a concern because this lens provides a deep focus range, ensuring the entire player
remains sharp throughout motion across the full depth of the dance pad. Two additional
lenses were also evaluated for comparison and their specifications are summarized in
Table 3.13. Both of these lenses provided compatible focal lengths and apertures but
did not have the horizontal field of view needed.

80r

(o)) ~
o o
T

wn
o
T

W
o

N
o
T

Camera Distance from Lens (inches)
B
o

=
o
T

o

—40 -20 0 20 40 60

-60
Horizontal Distance (inches)
----- Full Play Area (114" wide) — CIL034 (87°)
——=- Dance Pad (36" wide) —— CIL329 (120°)

—— CIL036 (75°)

Figure 3.4 Top-down field of view comparison between candidate M12 lens at 6ft
camera mounting distance. The dashed line represents the full 36 inch-wide dance pad
area, while the dotted blue line represents the 114" total play area for full-body motion
tracking.Wider FOV lenses (e.g., CIL329) cover the full width easily, while narrower
lenses like CILO36 may risk cutting off edge activity.

53

Usable Depth of Field by Lens Focal Length

1.4+ 1.33m

Usable DOF Range (m)

0.0

2.8 mm 3.2 mm 4.0 mm
Lens Focal Length

Figure 3.5 DOF comparison between candidate M12 lenses based on calculated near
and far limits at 1.83 m subject distance.

While the FOV angles of the candidate lenses appear visually exaggerated in top-down
diagram in figure 3.4, they are necessary to fully encompass the 2.9 m x 2.9 m player
tracking area from a 6 ft mounting distance. Wide-angle lenses, although susceptible to
edge distortion, are essential to ensuring full- body pose detection remains accurate
without requiring multiple cameras or stitching. Lenses with FOVs ranging from 65 to
120 were considered, with wider-angle options offering increased coverage at the
expense of potential barrel distortion near the edges. Despite this, these lenses are
well-suited for single-camera full-body tracking, particularly when paired with
post-processing or Al algorithms that are resilient to optical distortion. The final selection
strikes a balance between angular coverage, pixel resolution, and optical simplicity.

Figure 3.5 compares the usable depth of field range for the 2.8mm, 3.2 mm, and 4.0
mm lenses evaluated for the S.T.E.P.S optical system. As expected, shorter focal
lengths provide greater DOF, with the 2.8 mm lens offering the deepest focus range at
1.33 m. The selected 3.2 mm lens maintains a strong DOF of 1.23m, which is sufficient
to keep the entire player in focus across the 2.9 m x 2.9 m player tracking area from the
1.8 m camera distance. Although the 4.0 mm lens offers slightly higher image resolution
and lower distortion, its narrower DOF of 1.04 m increases the risk of motion blur or
focus loss during dynamic movement. Figure 3.5 reinforces the 3.2 mm lens as a
balanced choice that preserves focus stability while still meeting resolution and field of
view requirements.

54

Table 3.13 Lens options and their specifications

Lens Focal Horizontal FOV | Aperture (f/#) Price (USD)
Length(mm) (°)

Commonlands 3.2 ~87 2.4 $39

ClIL034

Commonlands 2.8 ~120 2.4 $39

ClL329

Commonlands 4.0 ~68 1.9 $59

042

Although the selected 3.2 mm lens provided an 87° HFQOV, slightly under the calculated
93° requirement, it was deemed acceptable given its low distortion profile, adequate
central coverage, and compatibility with the chosen sensor. Further testing will
determine if the minimal cutoff at the pad edges will have significant impact on
gameplay detection or user experience based on planned camera placement and pose
tracking zones during faster/ more dynamic movement .

3.7 LED illumination Technology

For the illumination system, both white & RGB LED strips, as well as individual LEDs
were considered. Thorough research went into deciding which option would be the most
optimal for this system. While RGB LEDs would offer more visual customization, they
raise possible challenges due to their color inconsistencies and power complexity
making them less ideal for computer vision tasks. White LEDs would provide better
illumination with more uniform color output and higher power efficiency[9], but could
also cause discomfort to the players’ eyes. Ensuring that MediaPipe is able to
consistently perform reliable pose detection is more important than aesthetic lighting,
but player comfort is an equally important metric.

With that being said, more research went into finding an alternative that would satisfy
both the illumination and user comfort requirements. 850 nm LEDs were found to be the
most optimal choice due to their ability to illuminate the player without causing
discomfort during game play. 850nm is near-infrared and only partially visible to the
player, but it is reliably detected by the camera as illumination.[7] These comparisons
are summarized in table 3.15. During the camera selection process, it was important to
find a camera that did not include an IR-cut filter to ensure that the 850nm LEDs would
be picked up on screen.

The choice between using individual IR LEDs versus LED strips was also considered
but LED strips were quickly determined to be the most optimal solution due to their ease
of integration and consistent IR output. Standard 12 V LED strips simplify power
distribution compared to the more complex constant-current drivers needed for discrete

55

LEDs, aligning with the system’s power efficiency goals. They are also highly practical
for testing because they can be easily modified or repositioned as needed. They allow
for better uniform and even light coverage across the dance pad area, which supports
consistent MediaPipe landmark tracking. While their only downside is having slightly
less beam-shaping flexibility, this factor is less important than cost, simplicity and
performance, which is why LED strips ultimately outperform discrete individual LEDs in

this design.

Table 3.14 lllumination Method Comparison

Attribute

RGB LEDs

White LEDs

850nm IR LEDS

Visibility to Player

Fully visible

Bright and visible

Partially or mostly
invisible

Comfort / Glare Moderate (color Potential discomfort | Comfortable (no
shifting may in dark environment | glare)
distract)
MediaPipe Inconsistent under | High contrast but Reliable for pose
Compatibility varied RGB output | could saturate detection
camera
Power Efficiency Lower (color Moderate High (simple
mixing requires constant voltage)
more power
Ease of Integration | Moderate (requires | Easy Easy 12 V strips
careful color
control)
Camera Compatible (RGB Compatible Compatible
Compatibility input) (requires no IR-cut
filter)
Beam Shaping/ Flexible with lenses | Fixed Slightly less flexible
Directionality or domes but evenly
distributed
Cost and Moderate to High Low Moderate and
Availability widely available

Chosen Option for
S.TE.P

Rejected due to
inconsistency

Rejected due to
glare

Selected for
performance and
comfort

56

Table 3.15 Comparison of IR illumination Formats: Individual LEDs vs. LED Strips

Attribute Individual 850nm IR LEDs | 850nm IR LED strips

Integration Complexity High (requires PCB design, | Low (peel- and-stick,
precise alignment) plug-and-play layout)

Driver Circuitry Requires constant-current | Runs off standard 12 V
sources constant-voltage supply

Light uniformity Potential hotspots, difficult | Even illumination across
to evenly space play area

Reusability/ Testing Difficult to reconfigure Easily repositioned or cut
during prototyping to fit

Beam Shaping Control Higher flexibility with Lower flexibility. Fixed
lenses or reflectors emission angle

Cost and availability Often lower per LED but Cost-effective for large
adds up with drivers and areas widely available
PCB work

Chosen Format for S.T.E.P | Rejected due to complexity | Selected for simplicity,
and inconsistency uniformity, and speed of

setup

3.7.1 LED Part Comparison

The main selection criteria for these strips was their ability to provide sufficient radiant
flux to support reliable MediaPipe detection, a wide beam angle near 120°for consistent
coverage, and moderate power consumption to fit within the available 12 V supply
constraints. Three candidates were compared and their specifications were summarized
in Table 3.16. The Waveform IRFlex 850nm, DC12/24V 5050 SMD strip, and the 360
Digital signature 3528 SMD strip. The 5050 SMD option provides both high output and a
moderate price point for 60 LEDs per meter and a power draw of approximately 14.4
W/m. 3528 SMD offers lower power consumption but has a higher price per reel making
it less ideal. The 2835 SMD strip provides the most LED density at 120 LED/m and has
the lowest power draw of about 9.6W/m, making it the most premium candidate of the
three at $55 per 5m.

All three options maintain a wide beam angle near 120°, supporting robust coverage of
the player’s body during movement. Based on these tradeoffs such as cost and power,
the 3528 SMD strip was selected as the baseline for initial prototyping. This is due to its
cost balance, radiant power, and easy 12 V integration with time-multiplexed control

57

zones. Final LED strip selection will be confirmed after prototype testing of illumination
uniformity and camera sensitivity.

Table 3.16 LED Strip comparison table

Feature Waveform IRFlex | DC12/24V 360 Digital Signage
850nm

LED Type 2835 SMD 5050 SMD 3528 SMD

Beam Angle 120 120 120

LED Density (/m) 120 60 60

Power(W/m) 9.6 14.4 7.2

Price ($) $55 $28.98 $45.89

3.8 Embedded System Development Languages

Our system will require software development both for the microcontroller unit (MCU)
and the rhythm game interface. In this section, we evaluate the most suitable
programming languages for each component based on criteria such as speed, ease of
development, memory control, and hardware access. The goal is to identify the best
language for programming our MCU and, if necessary, a separate language best suited
for developing the rhythm game.

3.81C

C is a low-level language most commonly used for programming MCUs. It provides
direct access to hardware while offering a cleaner abstraction than assembly language.
Because C compiles directly into machine code with minimal runtime overhead, it allows
extremely fast execution and real-time responsiveness, which is critical for embedded
applications like sensor reading or LED control.

Unlike high-level languages, C has no garbage collection, safety checks, or virtual
machines. Instead, the programmer is responsible for memory allocation and hardware
interfacing. While this increases development complexity, it allows precise control over
peripherals like GPIOs, ADCs, and timers. C is widely supported across virtually all
microcontroller platforms, including Teensy, Arduino, STM32, and ESP32. Overall, C is
not the easiest to learn, but it is the most efficient and reliable language for embedded
development.

58

3.8.2 Python

Python is a high-level, interpreted language known for its simplicity, readability, and
rapid development. While it is not suitable for low-level embedded programming (due to
memory and speed limitations), it is commonly used for PC-side applications,
prototyping, and game development, especially when paired with frameworks like
Pygame for rhythm games.

In embedded systems, Python is occasionally used on SBCs like the Raspberry Pi, but
not on MCUs like Teensy, where C or C++ are more appropriate. However, Python can
be used to simulate or visualize data from the dance pad or build a simple game
interface that responds to USB HID inputs from the MCU. Its vast ecosystem and ease
of integration with USB devices make it a strong candidate for the rhythm game
software, but not the microcontroller firmware.

3.8.3 Java

Java is another high-level language often used in application development, especially
for cross-platform environments. Like Python, Java is not ideal for embedded MCU
programming due to its reliance on the Java Virtual Machine (JVM), which adds
significant overhead and lacks the direct hardware access needed for real-time control.

However, Java can be used effectively for developing desktop-based rhythm games or
user interfaces that communicate with the dance pad via USB. Java’s strong support for
event-driven programming, GUI libraries (like JavaFX or Swing), and device input
handling makes it a reasonable choice if the rhythm game requires more structure or
modularity than Python might provide. Its portability and object-oriented architecture
may be overkill for simple games but could benefit larger or more scalable systems.

3.8.4 Embedded System Development Languages Selection

We are using C language to program our Arduino Leonardo microcontroller because it
offers the most efficient, direct, and low-overhead way to interact with the hardware
components of our system, specifically the FSRs, RGB LEDs, and USB HID interface. C
provides precise control over memory, peripherals, and timing, which is crucial for our
real-time step detection and LED response requirements. Unlike higher-level
languages, C allows us to write low-latency code that can directly manipulate GPIO
pins, read analog signals from FSRs via ADC channels, and update LED states with
minimal delay.

Arduino Leonardo supports C (and C++) natively through the Arduino IDE, allowing us
to easily configure the board for USB HID communication, which is essential for
translating foot inputs into instant keyboard-like signals recognized by the game. Since
our system is latency-sensitive and must respond with near-instant feedback for both
impact and press-and-hold inputs, using C gives us the deterministic performance we
need. Overall, C is the most appropriate language for programming the embedded side

59

of our dance pad system, offering speed, reliability, and full access to the hardware’s

capabilities.

Table 3.17 Top development languages for MCU comparison table

Feature C Python Java

Speed & excellent poor for embedded, | moderate

Performance (low overhead) decent for PC apps [(JVM overhead)

Ease of moderate very high high

Development

Memory Control manual automatic automatic

Hardware Access direct access limited indirect

Best Suited For embedded systems | PC-side scalable PC
prototyping, rhythm [applications, GUI
game logic

3.9 Computer Vision

3.9.1 Pose Estimation Techniques

3.9.1.1 Classical Techniques

Before the widespread adoption of deep learning, pose estimation was achieved
through traditional computer vision methods, many of which relied on handcrafted
features and rule-based pipelines. These classical techniques were computationally
efficient and suitable for the hardware available at the time, but they came with strict
environmental limitations and a lack of generalization across diverse scenes.

One of the earliest and most intuitive techniques used in classical pose estimation was
background subtraction. This method attempts to isolate the moving subject from a
static background by identifying changes in color or brightness between frames.
Typically, a “background model” is captured or assumed, and then each new frame is
compared pixel-by-pixel to detect motion. Basic versions used simple frame
differencing, while more advanced versions employed Gaussian Mixture Models
(GMMs) to handle subtle lighting fluctuations or gradual background changes. In a
constrained environment this method could effectively identify silhouettes or regions of
interest, forming the basis for further analysis like gesture recognition or contour
tracking. However, background subtraction quickly broke down in real-world scenarios.
Environmental noise such as flickering lights, moving shadows, or dynamic
backgrounds like waving trees introduced errors. Furthermore, it required the camera to
be stationary, as even slight camera movement could disrupt the entire model. While it

60

was a useful tool for early motion tracking experiments, its fragility under real conditions
made it impractical for generalized use, especially in games or public environments.

Figure 3.6 Example of Background Subtraction with OpenCV

Another classical technique that provided more temporal insight into motion was optical
flow. Instead of comparing single frames against a background, optical flow analyzes
the apparent movement of pixels between consecutive frames to estimate motion
vectors. This technique is especially useful for capturing the direction and velocity of
motion, making it ideal for analyzing limb movements or detecting walking and waving
gestures. The two primary approaches being dense flow and sparse flow offered
different trade-offs between resolution and performance. Optical flow has been used in
robotics and video analysis to infer actions from continuous motion, and in some early
gesture-controlled systems. However, it came with its own set of limitations. Large or
fast movements often led to errors due to motion blur or discontinuities, and occlusion,
when one part of the body hides another, posed a major challenge. Moreover, flow
estimation becomes ambiguous in areas with uniform texture or lighting, where pixel
intensity doesn't change enough to provide directional clues. In the context of
multi-person scenes or complex poses, optical flow was insufficient on its own, often
requiring additional heuristics or model-based constraints to be effective.

Contour detection and shape matching techniques sought to extract body outlines by
identifying edges and fitting known templates or convex hulls. These methods enabled
rough body pose estimation but failed in the presence of overlapping limbs, varied
clothing, or non-standard postures. Similarly, pose-from-silhouette techniques relied on
the shape of a segmented figure to infer likely joint locations, using statistical models of
human anatomy. These systems performed reasonably well for frontal or side views but
were limited by the inherent ambiguity of silhouettes in 2D projections.

Among classical methods, pictorial structures marked a significant conceptual shift by
introducing a more structured way to represent human pose. Rather than analyzing
motion or edges in isolation, they use a computer science graph-like representation
where nodes correspond to body joints and edges represent limbs. Each part was

61

associated with a probability distribution describing its likely appearance, and the spatial
relationships between parts were encoded through geometric constraints. The system
would then search for the configuration that maximized the overall likelihood across the
image, essentially solving an optimization problem to infer the most plausible pose. This
approach was robust to some extent against partial occlusion and varying camera
angles, making it more suitable than silhouette or contour-based methods for
challenging environments. However, it came at a cost. The inference step was
computationally expensive, especially for full-body models with many degrees of
freedom. These systems also relied heavily on strong contrast and clean segmentation
to reliably detect features in the first place. As a result, while pictorial structures
provided a powerful theoretical foundation for understanding pose, their practical use
was limited until more efficient algorithms and stronger feature representations emerged
in the deep learning era.

Figure 3.7 Graph representation of a typical pose for a human body

A major step forward came with the introduction of the Microsoft Kinect in 2010, which
helped bridge the gap between classical vision pipelines and modern learning-based
systems. The Kinect utilized structured infrared light to capture depth data in addition to
standard RGB imaging. This enabled accurate 3D skeletal tracking without requiring
wearable sensors or markers. Microsoft's implementation used machine learning
decision forests trained to identify joint positions from depth images, allowing for
real-time, multi-user tracking on modest consumer hardware such as the Xbox 360.
Though highly influential, Kinect's depth-based approach suffered from hardware
limitations, including limited range, sunlight interference, and platform dependency.

Despite their constraints, these classical techniques laid the groundwork for the
learning-based methods that followed. They demonstrated the feasibility of markerless
tracking and inspired early applications in gaming, gesture control, and
human-computer interaction. The lessons learned from these systems informed the
design of modern neural network architectures and dataset collection strategies used in
today's pose estimation models.

62

3.9.2 Modern Techniques

As hardware improved and large annotated datasets became available, convolutional
neural networks (CNNs) emerged as the dominant paradigm for pose estimation. These
models replaced handcrafted pipelines with data-driven learning, enabling greater
robustness, scalability, and accuracy.

The emergence of CNNs has drastically transformed the field of human pose
estimation, enabling high-accuracy, real-time detection of key body joints from standard
RGB imagery. Unlike classical techniques that relied on handcrafted features or
background modeling, modern CNN-based systems can generalize to a wide variety of
poses, environments, and occlusion conditions through extensive training on large-scale
annotated datasets.

One of the most influential convolutional neural network-based pose estimation
frameworks is OpenPose[19], developed by the Carnegie Mellon Perceptual Computing
Lab. OpenPose was the first open-source system capable of performing real-time,
multi-person 2D pose estimation with relatively high accuracy. It uses a method called
Part Affinity Fields, which predicts not only the positions of individual body key points
such as wrists, elbows, and knees, but also the directional associations between these
keypoints. This allows the system to effectively group detected joints into separate
individuals, even when multiple people are present in the same scene or overlapping in
view.

While OpenPose set a major milestone in pose estimation research, its accuracy comes
with significant computational demands. It typically requires a dedicated GPU in order to
achieve real-time performance, and its performance degrades considerably on devices
without powerful hardware. As a result, OpenPose is not well-suited for mobile,
embedded, or browser-based environments where memory, power, and processing
capabilities are limited. The framework is built on Caffe and makes extensive use of
OpenCV for tasks such as image preprocessing, rendering keypoints, drawing skeletal
lines, and managing post processing routines. This design makes it modular and
relatively easy to modify, but also heavy and resource-intensive compared to more
modern, lightweight alternatives.

In practice, many of the tasks handled by OpenPose’s post processing pipeline can be
re-implemented with simpler code using OpenCV and basic geometric rules. For
example, drawing connections between keypoints based on distance thresholds or
grouping joints into a rough pose can be achieved using a few lines of logic, especially
when used in combination with another library like MediaPipe to handle keypoint
detection. This makes OpenPose seem unnecessarily complex for applications that only
require basic gesture detection, such as identifying if someone is raising their hands,
jumping, or standing still.

63

Figure 3.8 OpenPose working on a large amount of subjects

In contrast to OpenPose, MediaPipe[21] Pose was developed by Google with an
emphasis on speed, efficiency, and platform flexibility. It was designed to operate on
low-powered devices without sacrificing too much accuracy. The system uses a
two-stage convolutional neural network pipeline. First, it detects the region of interest
around a person using a lightweight detector. Then, it applies a landmark model to
predict thirty-three key points across the entire body, including finer details such as
fingers, feet, and facial landmarks.

What sets MediaPipe Pose apart is its ability to deliver real-time performance even on
CPUs and embedded systems. It runs reliably on mobile phones, Raspberry Pi boards,
and NVIDIA Jetson devices without the need for a dedicated GPU. Its modular
architecture is built around a graph-based processing model, where each component in
the pipeline is represented as a node. This allows developers to customize, replace, or
extend parts of the pipeline, such as input normalization, inference logic, or output
smoothing.

In addition to its lightweight design, MediaPipe includes smoothing filters and motion
tracking features that reduce jitter and increase temporal stability. This makes it
especially suitable for applications involving fast movements or inconsistent lighting.
Although it may not match OpenPose in multi-person detection or sub-pixel keypoint
accuracy, its practical balance between speed, resource usage, and flexibility makes it
an ideal choice for mobile games, real-time interaction, and low-latency gesture
recognition.

64

OpenPose remains a powerful benchmark in academic and industrial settings where
multi-person detection, fine-grained keypoint accuracy, and research flexibility are
prioritized over efficiency. Its ability to consistently detect multiple overlapping subjects
and produce detailed skeletons makes it valuable for high-end applications such as
motion capture, live broadcasting, and scientific analysis. However, its reliance on GPU
acceleration, heavy memory footprint, and large model size make it impractical for use
in resource-constrained environments, such as mobile games or embedded systems.
MediaPipe Pose offers a more balanced solution by maintaining reasonably high
accuracy while optimizing for speed, modularity, and ease of deployment. Its ability to
operate smoothly on CPU-based systems allows developers to use it in real-time
applications where latency must be minimized and where external hardware
acceleration is not feasible. Furthermore, its graph-based architecture and wide platform
support (including Android, iOS, and desktop) enable developers to prototype and
iterate across a broad range of devices with minimal changes to the underlying
codebase.

Figure 3.9 Example prototyping of OpenCV and MediaPipe on Christopher Solanilla

For scenarios demanding ultra-fast performance and even lighter computational
demands, BlazePose[20] takes this optimization a step further. Its use of single-shot
detection eliminates the need for separate region proposals or sequential processing
steps, significantly reducing latency. Combined with model quantization and neural
architecture search, BlazePose achieves performance that exceeds 30 frames per
second on modern smartphones using only CPU resources. This makes it highly
suitable for applications in fitness tracking, augmented reality (AR), and gesture-based

65

interfaces where responsiveness and battery efficiency are critical. Additionally, its
prediction of 33 keypoints, including subtle facial and foot positions, enables more
expressive pose understanding despite its lightweight design. The most intriguing
feature of BlazePose is that it is able to predict within a high accuracy x, y, and z
coordinates for problems that may require 3D location.

In the context of our rhythm-based game, where low latency, reliable body tracking, and
smooth animations are essential for gameplay responsiveness, both MediaPipe Pose
and BlazePose represent ideal choices. Given that the game must run on commodity
hardware without access to high-end GPUs, the selection of a lightweight model is not
only a technical preference but a hard requirement. MediaPipe’s modular pipeline offers
a flexible starting point for tuning the pipeline to match the rhythm game’s input
structure and timing constraints, while BlazePose introduces an opportunity to push
performance boundaries even further if frame rate becomes a bottleneck. These models
align well with the constraints of real-time play and allow us to maintain a consistent
experience across platforms, from desktops to embedded consoles.

Figure 3.10 BlazePose demonstrating high performant pose tracking capabilities with 3
dimensions

66

3.9.3 Computer Vision Library Selection

After evaluating several options for implementing pose detection and real-time
vision-based input, we have selected MediaPipe and OpenCV as the primary libraries
for our computer vision subsystem. This decision reflects both technical capabilities and
our prior development experience.

MediaPipe, developed by Google, offers a lightweight and efficient pose estimation
pipeline that can run on commodity hardware, including embedded systems such as the
Jetson Nano. It supports real-time inference with acceptable latency, making it suitable
for our rhythm game's timing-sensitive requirements. MediaPipe provides prebuilt
models such as BlazePose, which can detect and track 33 body landmarks with a
balance of accuracy and speed. Its modular graph-based architecture allows
customization of the processing pipeline, enabling us to skip unused stages and
fine-tune performance parameters as needed.

OpenCV complements MediaPipe by offering a wide range of image processing utilities,
camera input handling, and matrix operations that are useful for gesture classification
and data smoothing. It also provides tools for visualization, geometric transformations,
and real-time filtering, all of which are valuable during debugging and refinement of the
pose recognition system.

Our previous work with these libraries in related projects, such as a pose-driven
accessibility tool, has shown that they are reliable, portable, and efficient when compiled
natively in C++ using Bazel. By combining MediaPipe’s pose estimation models with
OpenCV'’s low-level processing capabilities, we avoid the need to train models from
scratch and instead benefit from a well-supported and mature ecosystem.

Table 3.18 Comparison table of different computer vision technology

Tool Speed | Accuracy | Hardware Multi-person Best Use Case
Requirement Support

OpenCV Fast Low to Works on any No Basic gesture
Medium | CPU logic, simple
demos
OpenPose | Slow High Requires Yes Research,
powerful GPU motion capture

67

MediaPipe | Fast Medium Runs on No Mobile apps,
to High CPU/mobile real-time
interaction
BlazePose | Very Medium Optimized for No Fitness apps,
Fast CPUs AR, fast input

3.9.4 Prototyping with MediaPipe and OpenCV

To better understand the practical limitations and advantages of MediaPipe Pose, early
prototyping work was conducted prior to this project using a custom-built C++
application developed for a separate accessibility-focused project. This project, titled
Body Language Detector, was created as part of a hackathon hosted by my workplace.
Its goal was to explore the use of computer vision in assisting visually impaired users by
interpreting body language in real time. The application used a webcam feed to identify
and analyze nonverbal cues, such as hand gestures and body posture, and translate
these visual signals into auditory or textual feedback. The project aimed to give blind or
low-vision users more access to subtle social signals that are typically communicated
without speech.

To meet the performance requirements of real-time interaction, the application was
developed in C++ and used GTK for the graphical interface. This allowed for a native,
low-overhead Ul that could display pose information and system feedback without
introducing latency. OpenCV was used to handle image processing and visualization
tasks, while MediaPipe Pose provided the backbone for keypoint detection. Rather than
relying on Python, which would have simplified development but introduced
performance overhead, the entire pipeline was compiled using Bazel to ensure smooth
operation on Linux systems. Particular care was taken to support CPU-only inference,
making the program compatible with resource-constrained environments such as
embedded systems or older computers. The system was tested on a Gentoo-based
Linux setup, demonstrating stable performance and reliable keypoint detection without
the need for external GPU acceleration.

As seen in Figure 3.9, the prototype successfully tracked the user’s full-body pose using
a standard webcam. Landmarks such as the shoulders, elbows, knees, and wrists were
recognized in real time, and gesture logic was applied by calculating the relative
distances and angles between these points. For example, the application could detect
whether a person had raised both arms, crossed their arms, or shifted their weight to
one side. These features allowed for basic pose classification and helped shape an
understanding of what kinds of gestures could be reliably detected with lightweight pose

68

estimation frameworks. The experience of building gesture classifiers using simple
geometric heuristics informed the rhythm game’s input design, where fast, unambiguous
pose recognition is essential for gameplay accuracy and responsiveness.

The project is available on a public GitHub repository and includes build instructions,
MediaPipe submodules, and example code for evaluating gestures using OpenCV and
landmark data. Although the original purpose of the tool was to improve accessibility for
users with vision impairments, the prototyping process provided valuable insights into
the deployment of real-time pose estimation systems on constrained hardware.
Specifically, it helped highlight the trade-offs between model complexity and
responsiveness, and demonstrated the effectiveness of MediaPipe's filters and tracking
logic in noisy or unpredictable environments. These lessons directly informed the
technical direction of the project. Both offer reliable, low-latency pose estimation that is
well-suited for interactive applications running on systems without high-end graphics
hardware.

3.9.5 Considerations for Embedded Systems

Although the primary development and testing of the rhythm game is conducted on
desktop-class hardware such as gaming laptops or PCs, a long-term stretch goal of this
project is to deploy the system on an embedded platform such as the NVIDIA Jetson
Nano. This would allow the game to run as a standalone unit with integrated computer
vision, enabling a more portable and self-contained experience. While not required for
the core project deliverables, the embedded deployment scenario has been considered
throughout the design process to ensure future compatibility and ease of migration.
Achieving this goal introduces a number of technical constraints, particularly related to
computing power, memory, and thermal management that must be accounted for in
both the game engine and pose estimation pipeline.

3.9.5.1 Hardware Capabilities of the Jetson Nano

The NVIDIA Jetson Nano serves as a compact and cost-effective embedded computing
platform aimed at enabling edge Al applications. It is built around a quad-core ARM
Cortex-A57 CPU operating at up to 1.43 GHz, paired with a 128-core Maxwell GPU
capable of executing parallel computations required by deep learning inference. The
board is equipped with 4 GB of LPDDR4 memory, which is shared between the CPU
and GPU, making memory contention a critical factor in system performance. This
unified memory architecture reduces the overhead of copying data between processors
but also introduces constraints when both the vision pipeline and the game engine are
competing for memory bandwidth and capacity.

Despite its modest specifications compared to desktop-class GPUs or higher-tier Jetson
modules such as the TX2 or Xavier NX, the Nano is capable of running real-time
inference workloads when models are properly optimized. However, it cannot support
large-scale convolutional neural networks without suffering from memory exhaustion,
cache contention, or reduced throughput. Pose estimation systems that rely on deep
neural networks, particularly those involving multiple stacked layers or high-resolution

69

heatmaps, can quickly push the Jetson Nano to its limits. OpenPose, for example,
typically requires over 2 GB of RAM just for model inference at full resolution, and relies
on multi-branch processing stages to estimate keypoints and limb associations. These
demands make it infeasible to deploy OpenPose in its standard form without significant
pruning, quantization, and architectural simplification. Even in highly constrained
configurations, OpenPose achieves only 3 to 5 frames per second on the Jetson Nano,
rendering it unsuitable for real-time interactive use in latency-sensitive applications like
rhythm games.

In contrast, lightweight alternatives such as MediaPipe's BlazePose or Pose models are
specifically designed to operate under embedded constraints. MediaPipe relies on a
streamlined architecture that detects a single person per frame using a detector-tracker
approach, typically involving an initial region-of-interest (ROI) proposal followed by a
landmark regression stage. These stages are implemented as modular nodes within a
dataflow graph that can be reconfigured or pruned depending on the use case. By
reducing input resolution, disabling optional filters, and leveraging fixed-point arithmetic,
the MediaPipe pipeline can be tuned to achieve 15 to 25 frames per second on the
Jetson Nano, even when running alongside other processes such as camera capture
and basic game logic.

Furthermore, the Jetson Nano’s GPU can accelerate some portions of the pipeline
through CUDA, though MediaPipe does not natively integrate with NVIDIA TensorRT,
which limits the ability to fully offload inference from the CPU unless custom GPU
kernels are developed. Nevertheless, the combination of a streamlined pose estimation
model, configurable processing graph, and low-memory footprint makes MediaPipe a
viable candidate for real-time single-user gesture recognition on this hardware platform.

3.9.5.2 Software Stack and Runtime Optimization

Computer vision applications on the Jetson Nano are typically developed using the
NVIDIA JetPack SDK, which includes CUDA for GPU computation, cuDNN for deep
learning operations, and TensorRT for inference optimization. While these tools are
powerful, they are not directly compatible with every pose estimation framework.
MediaPipe, for example, is not natively integrated with TensorRT and instead relies
primarily on CPU inference or custom GPU pipelines. This can restrict its ability to fully
leverage the Nano's GPU unless a custom build is created and compiled specifically for
Jetson’s architecture. In contrast, OpenPose requires significant manual configuration to
function on the Jetson Nano. This includes aligning CUDA versions, recompiling
OpenCV with GPU support, and configuring swap space to avoid out-of-memory
crashes. These dependencies and the resulting fragility of the system make OpenPose
impractical for a rhythm game targeting consistent frame rates and predictable behavior.

MediaPipe provides a more stable and lightweight alternative. It offers precompiled
binaries for both Python and C++ that support CPU inference, and its modular
graph-based processing structure allows developers to disable optional components to
reduce resource consumption. When paired with inference backends such as
TensorFlow Lite or the ONNX Runtime, MediaPipe can run efficiently on the Jetson

70

Nano with minimal adjustments. The flexibility of this architecture is particularly
advantageous when attempting to tailor the pose detection pipeline to balance latency,
precision, and power usage.

3.9.5.3 Thermal and Power Management Constraints

In embedded systems development, particularly those involving computer vision
workloads, power consumption and heat generation become critical engineering
concerns that must be addressed early in the design process. The NVIDIA Jetson Nano
provides two selectable power modes: a default 5-watt mode and a more
performance-oriented 10-watt mode, which requires a barrel-jack power supply for
stable operation. While enabling the higher power mode improves the responsiveness
of both neural network inference and general system tasks, it also introduces higher
thermal output, which can become problematic in the absence of sufficient cooling
mechanisms. Continuous execution of convolutional neural network models, such as
those used for pose estimation, alongside a concurrently running rhythm game engine,
places sustained computational stress on the device, increasing the risk of thermal
throttling if the system exceeds its safe temperature thresholds.

To mitigate thermal buildup and avoid performance degradation over time, the Jetson
Nano requires active cooling solutions such as compact fans or aluminum heatsinks.
Even with such additions, software design must complement the hardware limitations by
adopting strategies that minimize unnecessary computational overhead. For instance,
reducing the frequency of camera frame polling or selectively enabling vision processing
only during gameplay segments that require it can dramatically lower heat output. The
rhythm game being developed does not rely on continuous full-body pose monitoring at
all times; instead, it only requires pose classification during specific gameplay prompts
that challenge the player to perform a particular movement. This creates an opportunity
to disable or suspend the pose estimation system during periods when it is not in use,
thereby reducing CPU and GPU workload and allowing the device to operate in a
lower-power state for the majority of gameplay.

Such an approach aligns well with the real-time demands of rhythm games, where pose
detection can be activated just prior to a prompt and then evaluated in a short time
window before being deactivated again. This intermittent activation pattern not only
supports power savings but also simplifies thermal management, since the vision
pipeline is no longer running continuously in the background. Moreover, additional
efficiency can be gained by limiting the input resolution of the camera, lowering the
target frame rate for pose estimation to around 15 frames per second, or batching
non-time-critical processing tasks so they execute during quieter moments of gameplay.
These strategies allow for more predictable thermal behavior and reduce the likelihood
of the device reaching critical temperatures that trigger throttling or system instability

3.9.5.4 Game Engine Integration and Resource Synchronization
The rhythm game is being developed using the Godot Engine, which introduces

additional integration considerations. Godot allows for C++ extensions through

71

GDExtension or GDNative, making it possible to incorporate MediaPipe's C++ API
directly into the game. However, careful synchronization between the engine and the
pose estimation system is critical. Since both the game and the pose detector may
require access to OpenGL contexts or video memory, concurrent usage can result in
resource contention or graphical glitches if not managed properly. To avoid such
conflicts, pose estimation should be executed in a dedicated thread or separate
process. Pose data can then be shared with the game engine using inter-process
communication or memory-mapped files, ensuring that Godot can operate smoothly
without interruptions caused by the vision pipeline.

This architectural decoupling also helps to minimize the impact of intermittent
performance drops in the vision system. Since pose detection and gameplay operate
semi-independently, short delays in processing frames do not immediately disrupt game
logic. Instead, previously detected poses can be held until the next update cycle,
maintaining consistency for gameplay elements that rely on accurate gesture input.

3.9.5.5 Memory Footprint and Latency Targets

The Jetson Nano’s 4 GB of RAM must support the operating system, the game engine,
camera buffering, model inference, and other runtime operations. MediaPipe’s pose
detection typically consumes between 100 and 200 megabytes of memory, depending
on image resolution and whether smoothing filters are enabled. Additional RAM is used
by the video capture pipeline, graphical assets, and internal Godot processes. Without
proper profiling, it is easy to overcommit memory and cause performance to degrade
unpredictably.

For rhythm-based gameplay, responsiveness is crucial. The full pipeline from camera
input to pose interpretation and game response should ideally remain under 150
milliseconds of latency. Delays beyond this threshold can disrupt the timing-sensitive
nature of rhythm gameplay and break player immersion. Achieving this target requires
efficient memory management, parallelization of processing stages, and reduction of
unnecessary overhead in both vision and game logic subsystems.

3.9.5.6 Summary and Design Tradeoffs

Based on the platform analysis, MediaPipe remains the most viable pose estimation
solution for the NVIDIA Jetson Nano. It balances performance, configurability, and
platform compatibility in a way that suits the needs of embedded game development.
While OpenPose offers more detailed multi-person tracking, its memory requirements
and complex setup disqualify it from practical use in this environment. BlazePose, as an
extension of the MediaPipe ecosystem, provides an additional fallback option in cases
where even greater inference speed is necessary or if resource usage exceeds
acceptable thresholds. By carefully managing resource allocation, thermal conditions,
and runtime behavior, it is possible to build a responsive and reliable rhythm game
experience that leverages pose estimation on embedded hardware without sacrificing
performance.

72

3.9.6 Programming Languages for Game and Computer Vision

The selection of programming languages for this project plays a central role in shaping
both the development workflow and the real-time performance of the computer vision
and game engine components. Given the nature of embedded systems and the
integration of computer vision models for pose detection, careful language choices must
be made that reflect both the technical demands of the system and the development
constraints faced by the team.

For the computer vision subsystem, both C/C++ and Python are widely adopted in the
field and are supported by key libraries such as OpenCV and MediaPipe. Python offers
a fast and accessible prototyping experience due to its dynamic typing, extensive library
ecosystem, and concise syntax. MediaPipe, in particular, provides precompiled Python
wheels that allow for rapid experimentation and integration with OpenCV, making it an
ideal language for early-stage development and algorithm testing. However, Python’s
interpreted nature and higher runtime overhead make it less suitable for
performance-critical or resource-constrained deployments, especially on embedded
hardware like the Jetson Nano.

In contrast, C/C++ offers significant advantages in terms of execution speed, memory
control, and portability, particularly for embedded and production environments.
MediaPipe’s core is written in C++ using the Bazel build system, which provides high
performance but also introduces greater complexity during compilation and integration.
The C/C++ API grants lower-level access to graph construction, buffer management,
and custom kernel development, enabling developers to fine-tune pipelines for optimal
performance. However, setting up a MediaPipe C/C++ environment on Linux, especially
for cross-compilation or GPU acceleration, can be challenging and may require in-depth
knowledge of build systems and dependency management.

Given the tradeoffs between flexibility and performance, many projects begin with
Python for rapid prototyping before transitioning to C++ for deployment. However, due
to prior experience working with MediaPipe, OpenCV, and embedded C++
development, we are able to bypass the initial Python prototyping phase and move
directly into a C++ implementation. This decision allows us to focus our efforts on
building a production-ready system from the outset while maintaining the performance
and low-level control necessary for real-time computer vision on the Jetson Nano.
Although Python remains a powerful tool for testing and experimentation, our familiarity
with the C++ development pipeline enables faster integration, better performance
tuning, and more efficient use of system resources.

The rhythm game itself is being developed in the Godot Engine, which uses GDScript, a
high-level, dynamically typed language with Python-like syntax, designed specifically for
Godot’s architecture. While GDScript is expressive and well-integrated with Godot’s
node system, it does not offer the low-level performance or external library compatibility
needed for high-throughput computer vision. Therefore, GDScript will be used primarily

73

for game logic and Ul, while pose estimation will be handled externally in C/C++ and
communicated to the game engine via inter-process communication (IPC) or shared
memory. If deeper integration becomes necessary, Godot supports C/C++ bindings
through GDExtension, enabling MediaPipe’s C/C++ modules to interface directly with
the engine while maintaining real-time performance.

3.9.6.1 Evaluation Criteria

The computer vision system in this rhythm-based dance game serves as an
event-driven input mechanism rather than a continuously running subsystem. Its role is
to detect specific player poses at designated moments defined by the game’s chart or
music track. While it is not active at all times, it remains an essential component during
gameplay segments that involve pose-based challenges. To function effectively in this
context, the system must meet key requirements in terms of latency, accuracy,
robustness, and integration. These criteria ensure the pose detection system can
reliably support time-sensitive interactions without introducing disruptions to the player’s
experience.

3.9.6.2 Latency

Timing is one of the most important aspects of rhythm game design. For players to feel
connected to the beat and confident in their inputs, the delay between a physical
gesture and the system’s recognition of that gesture must be imperceptible. For this
application, the maximum allowable end-to-end latency is defined as 100 milliseconds.
This measurement begins at the moment the camera captures a frame and ends when
the pose data is successfully delivered to the game engine for evaluation.

This latency budget includes image acquisition, any pre-processing applied to the
frame, neural network inference for pose detection, post-processing steps like keypoint
filtering or pose smoothing, and the transfer of results into the game logic. Delays
beyond 100 milliseconds can create a noticeable disconnect between the player’s
actions and the game’s response. At 150 milliseconds, players with strong rhythm
sensitivity may perceive the system as being off-tempo or unresponsive.

To minimize latency, the pose detection pipeline must use lightweight models such as
BlazePose or a stripped-down version of MediaPipe Pose. Frame resolutions should be
kept moderate, and smoothing filters should be configured for minimal delay. Where
possible, inference should be performed asynchronously on a separate thread.
Hardware acceleration through CUDA or TensorRT, if compatible, can further reduce
inference time and help maintain a consistent frame rate.

3.9.6.3 Accuracy

Accurate pose recognition is required to ensure the system scores player input fairly
and consistently. Errors in classification, including false positives where poses are
detected incorrectly or false negatives where valid poses are missed, directly impact
gameplay quality. Incorrect detections can result in dropped combos, missed prompts,
or undeserved penalties, reducing player satisfaction and overall trust in the game.

74

To address this, the pose estimation system should be configured to detect only a small
set of predefined poses used in gameplay. These can be manually defined or trained
using a dataset that includes common variations. Confidence thresholds should be
enforced to prevent low-quality predictions from being processed. Temporal validation,
where poses must be held across multiple frames to register, can help eliminate
flickering caused by brief or unstable detections.

In scenarios where transfer learning is feasible, the pose detector can be fine-tuned
using a small number of labeled examples that reflect the specific movement patterns
and player behaviors expected in the game. This improves classification accuracy
without the need to retrain an entire model from scratch.

3.9.6.4 Robustness

The game is expected to operate in a range of real-world conditions, meaning the vision
system must be resilient to variability in lighting, background clutter, clothing, and
camera positioning. Environments may include bedrooms, living rooms, classrooms, or
arcades, each introducing different visual challenges.

Lighting changes can introduce shadows or glare. Players may wear loose, patterned,
or dark clothing that affects keypoint visibility. Camera placement may vary slightly in
height, distance, or tilt. To maintain stability across these conditions, the pose estimation
system must be robust. Models that are invariant to scale and orientation, particularly
those using heat maps or landmark regression, perform better in uncontrolled
environments.

Testing should include augmenting the input video stream with artificial noise,
brightness variation, and occlusion to evaluate the system's tolerance. Ideally, the pose
detector should not require frequent recalibration and should support dynamic input
normalization during runtime.

3.9.6.5 Integration with the Game Engine

In a rhythm-based game where player gestures are a core part of gameplay, the
computer vision system must integrate cleanly with the game engine to avoid
introducing delays, instability, or data inconsistency. The pose detection pipeline should
operate in parallel with the main game loop, allowing the game engine to remain
responsive and frame-accurate even under high processing load.

A practical approach is to run the vision system in a dedicated thread or as a separate
process. This design reduces the likelihood of memory contention and helps isolate
crashes or slowdowns in the vision pipeline from the rest of the game. Data such as
keypoint coordinates, joint angles, or classified pose states can be communicated
through shared memory buffers, local sockets, or lightweight message-passing
protocols.

The interface between the vision module and the game logic should be structured and
minimal. Pose data should arrive in a predictable format with consistent timing to allow

75

the game engine to make real-time decisions, such as triggering animations, updating
score counters, or initiating visual effects. Synchronization mechanisms such as frame
counters, time stamps, or event queues can help ensure that pose detections are
correctly matched to the corresponding frames of gameplay. When evaluating different
CV pipelines, attention should be paid to their ability to support such integration models.
Systems that allow for modular runtime graphs, asynchronous processing, and efficient
memory management are typically better suited for integration in real-time game
environments.

3.10 Game Engines
3.10.1 Godot

Godot is a very useful game engine that is beginner friendly, is open source, and has a
lot of documentation as to how to use each function available in Godot. Furthermore
due to Godot being open source, there are a lot of third party tutorials and walkthroughs
regarding Godot teaching and guiding users how to accomplish various tasks for
different types of games. These tutorials include rhythm games which is what we will be
working on.

Godot’s game engine seems very easy to not only install, but also use once it has
already been installed. Godot’s ability to create various scenes, that of which hold a
variety of assets such as sprites, nodes, sound, animations and other useful assets
seamlessly make it very simple to use. Godot’s user interface also is very simple to
understand as one does not become overwhelmed.

Godot also has its own scripting language called GDScript, which is very similar to
Python which is used to be able to change various aspects of each object being made.
Due to Godot’s scripting language being based off of python, GDScript is a comfortable
language to understand especially for game scripting beginners who do not have a lot of
programming experience, specifically users without prior game design programming
knowledge. Through using GDScript, there are various functionalities that can be done
using it such as changing the positioning of an object or sprite across the y-axis or
x-axis which we will be using for the notes that will follow the beat. Another attribute that
can be changed using GDScript, are the colors of the objects after a certain button(s)
is/are pressed which we will be also using for the color changes of the arrows when
they are pressed.

Another fantastic feature that Godot has, is the compatibility mode that is used when
creating our project. Due to us having a microcontroller that will not have as much
computing power as a modern computer would have, having this as a feature will lower
the load that the microcontroller would need to output. We also have a member who has
used Godot in the past and due to their experience with Godot we had this option as a
priority, however we checked other sources as well to test which would be best for the
objective we are trying to complete.

76

Godot’s interface is very simple to understand. The nodes that will be on a specific
scene is located on the top left side where the scene tab is, the assets that are
implemented throughout the entire project will be located right below that in the file
system tab, and when clicking on a specific node, their properties will be located on the
right side in the inspector tab.

"20 ¥3D K Script XGame & Assetlib

Figure 3.11 Godot default interface
Scene Tab

The scene tab is located by default on the top left of the Godot’s user interface. The
scene tab hosts all of the different nodes that are located on the specific scene that is
selected. These nodes that can be added to the scene could range from different
sprites, to different types of polygons some of which can add collision detection, and
even audio files that can be played while the scene is being played. Afterwards, once all
the different nodes are placed on the scene selected, one could add a script onto each
of those individual nodes that allows modifications to the objects.

These modifications could range from the color of the polygon, the position of the sprite,
or even a custom property that one chooses to add to the object. Another way that
script can be attached, is by attaching them to one of the scenes as a whole. Doing so
will affect any and all objects that are inside the scene. This feature makes it easier to
modify a scene as a whole rather than individually modifying each object that exists in
the scene and makes the process seamless.The scene tab is very useful to keep one
organized as to what is going on in the scene and be able to see where everything is
positioned.

77

Filter: name, tit Q. JE

O Mode2D

Figure 3.12 Scene Tab

File System Tab

The file system holds all of the assets that are needed for the project. This includes any
scripts that are being run, any scenes that are made, any sprites that are imported, and
much more.

The file system tab also allows for the creation of various folders for better organization
for the project. Having multiple assets be bunched up makes working on it confusing,
however utilizing the file system the folders make it easier to search for a specific group
of assets such as one for how an arrow functions or searching for how the menu
interface is set up, makes it seamless to update certain assets when needed.

78

FileSystem

res://

Filter Files
% Favorites:
s res:.//

@ icon.svg

Figure 3.13 FileSystem Tab
Inspector Tab

The inspector tab holds all the information in regards to a certain object that is being
highlighted. Whether that be an imported sprite, a custom made polygon that has the
collision feature attached to it, or even an audio source that needs to play music, the
inspector tab will have that information stored for users to be able to make modifications
manually to certain attributes.

For example, users can decide that they would like to change the positioning of a
certain sprite or polygon, under the transform dropdown one could access the various
transformations that one could make such as moving across the x-axis or move across
the y-axis. Users can also decide that they would like to rotate an object a certain way,
this can also be done in the transform section.

There are many other attributes that users can add to the object selected through the
inspector tab such as scripts that were mentioned before.

79

Inspector

E

O NodeZD
Filter Properties

O NodezD
Transform

Canvasltem
Visibility
Ordering
Texture
Material

O Node

Process
Physics Interpolation
Auto Translate

Editor Description

Script <empty= v

-+ Add Metadata

Figure 3.14 Inspector Tab
3.10.2 Unity

Unity is another game engine that exists that could be used to make 2D games. Unity
however is more focused on 3D games rather than 2D games. Some features such as
the Tilemap system, the SpriteShape, and pixel-perfect rendering exist that could help
us create our 2D rhythm game that we are trying to accomplish.

Unity also offers audio synchronization tools and a timeline that could make it easier to
have both the player actions along with the musical beats to be in tune, which is a key
factor in terms of how the game should function while it is running.

The downside of using Unity, is that for scripting, it uses a language called C# which is a
quite advanced language to use and isn't a very beginner friendly scripting language for
game building. Even though it is a very powerful language to learn, its learning curve is
very high without prior experience using the language.

Furthermore, due to how large unity is in terms of their features, it becomes very
overwhelming understanding what unity has in store vs what it does not have in store.
After opening it for the first time, Unity has a variety of libraries that come installed with
it causing the engine to take a long time to open for the first time.

80

One good attribute that Unity has, is the built in version control called Unity Version
Control. While it is a good feature to have, due to us being a group of 5 people, it would
cost us an additional $14 monthly to use their built in system.

File Edit Assets GameObject Component Services Jobs Window Help

Figure 3.15 Unity default 3D interface

File Ed ices Jobs Window Help

Script @ * i

Figure 3.16 Unity default 2D interface

81

In Unity, users are able to change between the 3D version as mentioned before and a
2D version. While in the 3D version you are able to manipulate various objects needed
in the X, Y, and Z directions, the 2D version only allows manipulations in a two
dimensional space. The main differences between the two different versions are the
objects that one can add to either version. In a two dimensional space any basic shape
can be added such as circles, squares, and other 2D objects. This also includes spites
and other assets that are two dimensional. In the figure there is an empty newly created
project that added the two dimensional camera that is able to be moved around.

Hierarchy Tab and Inspector Tab

The Hierarchy Tab in Unity, similar to Godot's Scene Tab, is located by default on the
left side of the Unity Editor interface. It serves as a structural view of all the game
objects present in the current scene. These objects are organized in a parent-child
relationship, allowing users to easily manage and navigate complex scene structures.
From this tab, users can create new game objects, delete existing ones, and organize
them to better structure gameplay logic or Ul layers.

On the other hand, the Inspector Tab, found on the right side of the Unity interface,
displays detailed information and configurable properties for the object currently
selected in the Hierarchy. Just like in Godot, users can manipulate position, rotation,
scale, and visibility, but Unity's inspector also provides deeper customization through
components. Every object in Unity can be made functional by attaching components like
Colliders, Rigidbodies, Ul elements, AudioSources, and more.

One of the most powerful features of the Inspector Tab is the ability to attach custom C#
scripts. These scripts define behaviors and can interact with other game objects and
systems. Although Unity’s scripting system offers flexibility and power, it comes with a
steeper learning curve—especially for beginners. Understanding how different built-in
methods (like Start(), Update(), or OnTriggerEnter()) interact requires time and practice.
Despite this, the Inspector’s modular design makes it easy to prototype features by
mixing visual tools with coded logic.

Overall, the Hierarchy and Inspector tabs in Unity offer a robust combination of scene
organization and detailed object manipulation, providing developers with both clarity and
control throughout the development process.

82

= Hierarchy i)ects
+ - o Al _-'::3:_ ¢t Camera
A Obstacles® ag v Layer Default
£7) Pixel Perfect Camera

xel Snapping

v Universal Additional Camera Data (Script)

Add Component

Figure 3.17 Unity Hierarchy and Inspector Tabs
Project Tab

Similar to Godot, Unity has the “Project Tab” where similar to Godot’s file system holds
all of the assets that are needed for the project. Inside the project tab, any scripts that
are being run and any assets that are imported though the Unity Asset Store can be
found here. The project tab is very useful as when double clicking an object from the
inspector tab, will instantly highlight and direct to you the folder from the project tab it is
in.

The project tab also allows for the creation of various folders for better organization for
the project. For example if there are multiple assets that have similar characteristics,
they can be all sorted into a single folder, making it a great organization tool for cleaning
up users workspace.

83

M Project B Console
+ v

% Favorites

i Assets

aw Packages
A

Figure 3.18 Unity Project Tab

3.10.3 Unreal Engine

Unreal Engine is a game engine that one can install using the Epic Games launcher
created by Epic Games themselves that is mainly used for 3D games. They are mostly
known for being used for AAA game development which are games that are very large
with many assets attached to the game mostly made in the 3D space. However, Unreal
Engine has added the capabilities to create 2D games through their “Paper 2D”
functionality allowing to only see the space in the 2D perspective rather than adding the
Z-direction. This functionality allows 2D sprites to be made and other 2D assets that
could be used for a 2D game being developed on their game engine.

One of the downsides to using Unreal Engine however, is that although it has tutorials
on how to create games, all of the ones that they offer on their website are mostly
geared towards those who are aiming to create a 3D game. Since we are making a 2D
game, those tutorials do not work for us entirely. There are however some aspects of
those tutorials that we could use such as their scripting of sprites and event handling.
Unreal Engine also has the same problem that Unity does which is the load that it has
on the system.

Figure 3.19 Unity Hierarchy and Inspector Tabs

84

In order to activate the 2D paper form there is a very complicated process in order for
the 2D paper form to appear, however, this doesn't make the entire scene two
dimensional, instead it makes the sprite themselves two dimensional and not the space
that they are in themselves.

This two dimensional paper form although could be useful, since it is really only useful
for three dimensional space, it would not be useful for us since we only want to work in
two dimensions.

A positive aspect of using Unreal Engine is that it has its own version control feature
that will be talked about later on. However although that is just one positive aspect,
there are many drawbacks that would not be

Unreal although a popular option as a game engine would not be a good idea in a two
dimensional space due to their lack of support for ease of use especially in the 2d space
that we would need for creating our project.

3.10.4 Version Control
3.10.4.1 Github

Github is a very popular version control manager that allows multiple people to work on
a project at a given time. By using their Git Repositories, users can access all of their
uploaded documents through their cloud service. This allows for users to work on one
computer, upload any and all documents or files they need for their project, and be able
to work on another computer and retrieve all the documents they need to continue
working.

Furthermore, since Github is indeed a version control manager, it is able to retrieve past
versions of projects in the case that a mistake was made that caused the entire project
as a whole to crash. This allows restoring the project to a previous state that it was in
before the crash occurred thus recuperating the past stable needed.

However one must be careful when doing so as if not done so properly could be
detrimental causing hours if not days of progress to be lost.

Another useful feature that github has is its ability to work on separate branches than
the main one being used. What these branches allow one to do is work on a specific
portion of the project separately using the same main project source code and make
modifications without modifying the main source code. This is extremely useful for us
due to the separate portions that we will be working on and not wanting to make
mistakes that others would have to fix later on.

To add on to the branch, users can also merge projects together, allowing for branches
that one worked on to be combined with the main project code and be updated. This

85

allows for example one person to make changes to the main project code based on one
feature, and once done, the user is able to merge with the main code that others have
access to as well. One must be very careful with merging as there is a possibility of
overrides that can cause projects to crash, so one must be sure that the merging
procedure is done correctly so that mistakes do not appear at a later time.

Github has other resources such as its Large File Storage System and their Locking
mechanism as well. Both of these resources will be integral to our project especially
with having large files that if not properly maintained, could cause consequences when
making future merges.

Locking allows us to be able to disallow any changes to documents unless they are
unlocked, this allows for us to work on the project together without having the need to
worry about accidentally making changes to the wrong file or overriding any other work
that other group members have progressed on and that work being lost for good.

3.10.4.2 Perforce

When it comes to the gaming industry, the most common version control software used
in the industry is actually Perforce. Perforce has a different kind of paradigm when it
comes to version control with the use of its depots and streams.

Unlike git, it does not like to merge files or handle conflicts but rather focuses on having
a system where only certain users are able to make changes at a time with the use of
locks.

By default everything in a perforce project is read only, and when a user needs to make
changes to their project they have to request to unlock it which can only be done if no
one else has the key to that lock for the file.

The concept of locking for version control becomes especially useful for video game
development due to the nature of binary files. Binary files are large files that humans are
not able to properly differentiate changes from with examples being files such as
images, videos, or 3D object files. While it may be possible to quickly see the difference
from one change of file that contains code for programming and thus merge both
existing changes, it would be nearly impossible to combine something like a game asset
where two people ended up working on the same asset making their own unique
changes.

Due to this, perforce enforces a strict policy on what files a person is able to edit at a
given time, especially to prevent two people from editing a binary file.

For our project, perforce is a strong contender for collaborating on the development of
our video game software. Our game will include a lot of assets such as colorful notes
represented by arrows, indicators for players to do a pose, Ul assets for song selection,
and map files for our songs. If two of us were to step on each other's toes and

86

accidentally both work on the same binary file, we would have to scrap either one or
both of our work.

Perforce would make this scenario never happen in the first place, but it is not without
its own costs. For one, perforce is a paid service and requires hosting of some sort to
get going, and having more than 5 people in a project requires a hefty monthly
subscription.

Additionally, Perforce is also a lot less intuitive for usual software engineers to
understand and takes a lot of setup given the hosting process of it. Only one of our
group members had any experience with perforce, and in the end an executive decision
was made to avoid it all together due to the complicated nature of it. Instead we opted to
go for a best of both worlds approach using git with file locking via a large-file-system.

While not as robust as perforce, it at the very least will not allow commits to files with
locks. Furthermore, it is not a huge issue at the moment to use git since we have at
most two people actively working on the development of the video game.

Perforce could be a potential addition to our project in the future if this project succeeds
beyond expectations, but at the moment traditional git with large-file-system enabled will
be enough.

3.10.4.3 Unity Version Control

Unity Version Control as previously mentioned is Unity’s built in version control system
that allows for multiple users to access the project at any given time. With having the
first 3 users free, then afterwards it will cost an extra $7 a month per additional user that
one would like to add to the project.

One of the positives of using Unity Version Control is that one would not need to rely on
external Version Control programs such as Git or Perforce. Having to rely on external
software at times can be slightly deterring due to the fact that if the service goes down,
it could cause issues on continuing to work since users would not be able to update
their work in a timely manner while when using Unity Version Control, it goes directly off
the users machine and can be updated at a later time without the loss of work being
made.

One major drawback of using Unity Version Control is that in order to use it we are

forced to use Unity as our game engine of choice. While Unity is a good game engine,
there is a possibility that there are other game engines that we prefer to use.

87

3.10.4.4 Unreal Engine Version Control

Unreal Engine, similar to Unity, has its own built-in version control system. This is very
helpful since if multiple people want to work on the project at any given time, users are
indeed able to do so and are able to modify files and other assets needed as they
please as long as the merging process of the multiple files are done correctly and
overriding certain aspects of the project as a whole do not happen.

Like Unity, one of the positives of using Unreal Engine’s built-in version control is that
users of Unreal Engine would not need to rely on Git or Perforce as their choice of
version control software.

One major drawback of using Unreal Engine’s built-in version control is that in order to
use it we are forced to use Unreal Engine as our game engine of choice. While Unreal
Engine is a good game engine to use in general, for our specific project, we have not
determined yet if Unreal will be our game engine of choice.

3.10.5 Game Engines Comparison

After comparing the three different game engines, Godot will be the most suitable
choice for developing our 2D rhythm game. Due to its open-source nature, lightweight
installation process, and their intuitive user interface, causes Godot to become
especially accessible for beginners. The scripting language that Godot has built in,
GDScript, closely resembles Python, which lowers the learning curve for those users
who do not have prior game development experience. Additionally, Godot has extensive
documentation and community-made tutorials that are extremely useful , including those
specific to rhythm games, which aligns perfectly with our project's goals. Unlike Unity
and Unreal Engine, which are primarily designed for 3D games and can be
overwhelming with their complex interfaces and heavier system requirements, Godot
offers a streamlined development environment and even includes a compatibility mode
ideal for microcontroller-based projects. Given our team's familiarity with Godot and its
alignment with our technical needs and project scope, we have decided to move
forward using Godot as our game engine.

Table 3.19 Game engines comparison table

Feature Game Engine
Godot Unity Unreal Engine
Primary Use Case 2D & 3D games Primarily 3D, Primarily 3D,
(strong 2D supports 2D limited 2D via
support) Paper2D
Beginner Friendliness | High Moderate Low

88

Scripting Language GDScript C# C++ or Blueprints

Tutorial Availability Extensive, Many, mostly Mostly 3D tutorials
especially for general or
2D/rhythm games | 3D-focused

Installation/Startup Lightweight, fast Heavy install, Very heavy, Epic
and simple slow to start Games Launcher

required

Ul/Workflow
Complexity

Simple and clean

Complex, many
default libraries

Complex and
feature-dense

Audio/Timing Features

Manual via
scripting

Built-in audio
sync and timeline
tools

Available but
requires additional
setup

Version Control

External tools

Built-in (costs

External tools (e.g.,

Friendly

compatibility mode

Support (e.g., Git) extra for teams) Git)
Open Source Yes No No
Microcontroller Yes, has No No

Best Use Case in
Project

Ideal for 2D rhythm
game with limited
resources

Possible, but
better for Unity
experts

Least suitable for
2D rhythm game
beginners

3.10.6 Version Control Comparison

Table 3.20 Version Control Comparison Table

Game Engine

Version Control

Godot

Unity

Unreal Engine

Unity Version
Control

. Useable

Unreal Engine
Version Control

. Mot Ussable

Perforce

Chosen Route

89

After comparing the version control options that we had available, since we have
decided to use Godot as our game engine of choice, we had the option to choose
between Perforce and Git. Ultimately we have decided to use Git as our version control
of choice due to its various features such as locking, large file storage system or LFS for
short, as well as its ability to have multiple users work on the project and be able to
upload their work by merging with existing files.

As a result we have Godot and Git as our core game engine and version control
systems to complete our goal with the dance rhythm game system we plan to create.

4. Standards and Design Constraints

Standard: IPC-2221A — Generic Standard on Printed Board Design

The IPC-2221A, "Generic Standard on Printed Board Design," serves as the
foundational standard for the design of printed circuit boards. Published by IPC, the
global electronics industry association, this document establishes the generic
requirements for the design of organic printed boards, from single-sided boards to
complex multilayer structures. It provides a robust framework of rules and principles that
govern nearly every aspect of PCB layout, ensuring that the final product is not only
functional and reliable but also manufacturable. For any electronic design project,
applying the principles of IPC-2221A is a critical step in translating a schematic diagram
into a physically sound and dependable product.

At its core, IPC-2221A is a guide for Design for Manufacturability. It creates a common
language and a set of baseline requirements between the designer and the fabrication
house. By establishing rules for spacing, feature sizes, and tolerances, the standard
ensures that a design can be reliably produced using standard manufacturing
processes, which helps to control costs, improve yields, and reduce production time.
The standard also defines three performance classes based on the intended end-use
environment, which dictates the stringency of the design rules. Class 1 is for general
electronic products where the primary requirement is the function of the completed
assembly. Class 2 is for dedicated service electronic products requiring high reliability
and an extended service life, where uninterrupted service is desired but not critical. This
is the target class for the dance pad project. Class 3 is for mission-critical products
where continued high performance or performance-on-demand is essential.

IPC-2221A provides extensive guidance on the electrical aspects of PCB design to
ensure both signal integrity and user safety. One of the most critical safety
considerations in PCB design is the spacing between conductive elements, known as
clearance. Insufficient spacing can lead to dielectric breakdown or arcing between
traces, especially at higher voltages. IPC-2221A provides detailed tables that specify
the minimum required clearance based on the peak DC or AC voltage between
conductors. These requirements vary based on whether the conductors are on internal
or external layers and whether they are coated. For the dance pad, which operates at a

90

low voltage of 5V, the minimum spacing requirements are easily met, but acknowledging
this standard is crucial for demonstrating sound design practice.

The width and thickness of a PCB trace determine its current-carrying capacity. A trace
that is too small for the current it must carry will overheat due to its own resistance,
which can damage the PCB laminate or cause the trace to fail entirely. IPC-2221A
provides charts and formulas that relate a conductor's cross-sectional area to its
temperature rise for a given amount of current. This allows designers to select an
appropriate trace width to ensure the board operates within safe thermal limits. For the
power and ground traces on the dance pad's PCB, these guidelines were used to
ensure they could handle the total current draw of the system without significant
heating.

Beyond electrical rules, IPC-2221A specifies the physical and mechanical
characteristics of the board to ensure its structural integrity and compatibility with
assembly processes. Vias are plated-through holes that form electrical connections
between different layers of a PCB, and their reliability is paramount to the function of a
multilayer board. IPC-2221A provides specific guidelines for via design. The annular
ring is the ring of copper that surrounds a drilled hole. The standard specifies a
minimum acceptable annular ring width to ensure a solid connection between the via
barrel and the trace after drilling and plating, accounting for manufacturing tolerances.
For Class 2 designs, a robust annular ring is required to prevent breakout, where the
drill hole is not completely surrounded by the copper pad. The aspect ratio is the ratio of
the board's thickness to the diameter of the drilled hole. A high aspect ratio can make it
difficult to achieve reliable copper plating down the entire barrel of the via, so the
standard provides limits on aspect ratios to ensure manufacturability.

The standard also addresses the need to manage heat generated by components. A
common technique guided by IPC-2221A is the use of thermal relief pads. When a
component pin needs to connect to a large copper plane, such as a ground plane, a
direct connection would act as a large heat sink, making it very difficult to solder the
component. A thermal relief pad creates small copper spokes to make the connection,
which reduces the heat transfer during soldering while still providing an adequate
electrical connection.

A critical function of the IPC-2221A standard is to define the requirements for a
complete and unambiguous documentation package. A design is only as good as the
documentation that communicates it to the manufacturer. The standard calls for a set of
documents that typically includes a fabrication drawing, an assembly drawing, Gerber
files, and a Bill of Materials. The fabrication drawing specifies the board's dimensions,
layer stack-up, materials, and drill hole information. The assembly drawing shows the
location and orientation of all components. Gerber files are the industry-standard file
format that describes each layer of the PCB, such as copper layers, solder mask, and
silkscreen. The Bill of Materials is a complete list of all components to be mounted on
the board. By following the documentation guidelines of IPC-2221A, the design intent
for the dance pad's electronics is clearly and professionally conveyed, minimizing the
risk of manufacturing errors.[30][31][32]

91

Standard: Universal Serial Bus (USB)

The Universal Serial Bus is a ubiquitous industry standard that establishes
specifications for cables, connectors, and communication protocols for connection,
communication, and power supply between computers and peripheral devices. Its
development was intended to standardize the connection of computer peripherals,
thereby replacing a multitude of legacy interfaces. For this project, adherence to the
USB standard is critical for ensuring interoperability and a seamless user experience.

While several revisions of the USB standard exist, the USB 2.0 specification was
selected for this project due to its widespread compatibility and sufficient data
throughput for the required application. USB 2.0 provides a maximum data signaling
rate of 480 Mbit/s, which is more than adequate for transmitting the state changes of the
dance pad's nine input tiles. Furthermore, the standard specifies a bus power supply of
5V, with a high-power device permitted to draw a maximum of 500mA, a critical
constraint for the system's power budget.

A key component of the USB specification relevant to this project is the Human
Interface Device class. The HID class is a device class specification that defines a
protocol for low-latency, low-power peripherals, such as keyboards, mice, and game
controllers. The primary advantage of utilizing the HID class is that it obviates the need
for custom host-side drivers, as support is natively integrated into modern operating
systems, including Windows, macQOS, and Linux.

Device functionality is communicated to the host computer through a series of
descriptors during the enumeration process. Device descriptors identify the peripheral
with a unique Vendor ID and Product ID. HID descriptors specify that the device
conforms to the HID class. Report descriptors are the most critical for this project, as
they define the structure and format of the data packets, known as reports, that the
device will send to the host. For the dance pad, the report descriptor will be configured
to define a data structure containing the boolean state of each of the nine input tiles,
effectively representing them as buttons. Once enumerated, the device transmits data
to the host via Input Reports over a dedicated interrupt-based endpoint, ensuring that
state changes are communicated with minimal latency.[33][34]

Standard: FCC Part 15 — Unintentional Radiators

The Federal Communications Commission establishes regulations to manage
electromagnetic interference under Title 47, Part 15 of the Code of Federal Regulations.
This standard governs the operation of radio frequency devices without requiring an
individual license. Any electronic device incorporating digital logic and operating with
clock frequencies greater than 9 kHz is capable of generating electromagnetic energy.
While not its primary purpose, this energy can radiate from the device and cause
interference with radio communications. Such devices are classified by the FCC as
unintentional radiators.

FCC Part 15 defines two primary classifications for unintentional radiators based on the
intended market and environment. Class A is for devices used in commercial, industrial,

92

or business environments, where the limits on radiated and conducted emissions are
less restrictive. Class B is for devices intended for use in residential environments. The
emissions limits for Class B are significantly more stringent to prevent interference with
consumer electronics such as televisions, radios, and Wi-Fi networks. Given that the
9-tile dance pad is a consumer-oriented gaming peripheral, it falls under the Class B
classification. Therefore, the design must consider stricter emission limits applicable to
residential devices.

While formal FCC certification is beyond the scope of this academic project,
incorporating design principles aimed at minimizing electromagnetic interference is a
fundamental aspect of professional engineering practice. Several strategies have been
considered in the design of the device's printed circuit board and overall system
architecture. The PCB is designed with a large, contiguous ground plane, which
provides a low impedance return path for digital signals and minimizes the area of
current loops that can act as radiating antennas. Small ceramic decoupling capacitors
are placed physically close to the power and ground pins of the microcontroller and
other integrated circuits. These capacitors serve as a local charge reservoir and shunt
high-frequency noise from the power distribution network to the ground plane,
preventing its propagation. The slew rates of high-speed digital signals are controlled
where possible, as sharper signal transitions contain higher-frequency harmonic content
that can contribute to radiated emissions. Finally, a shielded USB cable will be specified
for connecting the device to the host computer. The shield helps to contain
common-mode noise generated by the device's circuitry and prevents the cable from
acting as an antenna. By implementing these EMI mitigation techniques, the design
proactively addresses the requirements of FCC Part 15, ensuring the device operates
as a responsible and non-interfering electronic product.[35][36]

Standard: UL 62368-1 — Hazard-Based Safety for ICT & AV Equipment

The UL 62368-1 standard represents a modern, hazard-based approach to product
safety for Information and Communication Technology and Audio/Video equipment.
Published by Underwriters Laboratories, this standard shifts from a traditional
incident-based model to a proactive, performance-based methodology focused on
identifying potential hazards and implementing safeguards to mitigate them. As the
dance pad is an electronic peripheral that directly interfaces with both a host computer
and a human user, ensuring its safety in accordance with established principles like
those in UL 62368-1 is a primary design objective.

UL 62368-1 is built on the principles of Hazard-Based Safety Engineering, which
involves a three-step process: pinpointing all potential energy sources within the
product, categorizing the energy sources based on their potential to cause pain or
injury, and applying appropriate safeguards to protect users from any energy sources
classified as hazardous. For the dance pad project, the primary energy sources are
electrical and mechanical.

While this academic project will not undergo formal UL certification, the design
philosophy of UL 62368-1 has been integrated into the development process to ensure

93

user safety. Electrical hazard mitigation is addressed by powering the device exclusively
by a 5V DC source via a standard USB 2.0 port, which is classified as an ES1
environment under UL 62368-1. This low voltage is not considered hazardous and does
not present a risk of electric shock. To protect against potential short circuits or
overcurrent conditions, the custom printed circuit board design incorporates a resettable
Polymeric Positive Temperature Coefficient fuse. This device automatically interrupts
the circuit in an overcurrent event and resets when the fault is cleared, providing robust
protection against fire hazards. All internal wiring is appropriately insulated and secured
to prevent abrasion or pinching.

Mechanical hazard mitigation is also considered, as the dance pad is subjected to
significant and repeated mechanical stress during gameplay. The enclosure is
constructed from high-impact polycarbonate and plywood, materials selected for
durability and resistance to fracture. All external corners and edges of the enclosure are
rounded to a radius of no less than 3mm to prevent cuts or injuries from sharp edges.
The internal structure is designed to distribute impact forces, ensuring the assembly
remains mechanically sound and that no internal components can become dislodged
and create a secondary hazard. By adopting the hazard-based principles of UL
62368-1, the design of the dance pad prioritizes user safety, addressing potential
electrical and mechanical risks through deliberate material selection and the
implementation of appropriate safeguards.[37][38]

Standard: RoHS - Restriction of Hazardous Substances

The Restriction of Hazardous Substances Directive, originating in the European Union,
is a critical environmental and health-focused standard for the electronics industry. The
directive, specifically RoHS 3, restricts the use of ten specific hazardous materials in the
manufacture of various types of electrical and electronic equipment. Although this
project is not intended for commercial sale in the EU, voluntary adherence to RoHS
principles represents responsible engineering practice, minimizing environmental impact
and ensuring the final product is safe for users and for disposal.

The RoHS directive restricts several substances to a maximum concentration of 0.1%
by weight, apart from Cadmium, which is limited to 0.01%. These substances include
Lead, Mercury, Cadmium, Hexavalent Chromium, Polybrominated Biphenyls,
Polybrominated Diphenyl Ethers, and four specific Phthalates.

A conscious effort was made throughout the procurement and assembly phases to
ensure the components and materials used in the dance pad are RoHS compliant. All
active and passive electronic components, including the microcontroller, resistors,
capacitors, connectors, and diodes, were sourced from reputable distributors where
they were explicitly verified to be "RoHS Compliant" based on manufacturer's
datasheets. This ensures that the fundamental building blocks of electronics are free
from restricted hazardous substances. The custom PCBs for the project were
manufactured by a fabrication house that offers a RoHS-compliant manufacturing
process, guaranteeing that the PCB substrate, solder mask, and surface finish do not
contain restricted materials. The most significant step taken to ensure RoHS

94

compliance during in-house assembly was the exclusive use of lead-free solder. Instead
of traditional tin-lead solder, a tin-silver-copper alloy was used for all soldering tasks.
While lead-free solder requires higher working temperatures and presents different
wetting characteristics, its use eliminates the most common hazardous substance found
in electronics assembly, protecting both the assembler and the environment. By
adhering to the RoHS directive, this project demonstrates a commitment to modern,
environmentally conscious design standards that extend beyond immediate functional
requirements.[39][40]

Standard: IPC-A-610 — Acceptability of Electronic Assemblies

The IPC-A-610, "Acceptability of Electronic Assemblies," is the most widely recognized
global standard for the workmanship and quality of printed circuit board assemblies.
Developed by the Association Connecting Electronics Industries, this standard provides
comprehensive, visually supported criteria for evaluating the quality of electronic
assemblies. Adhering to the principles outlined in IPC-A-610 is essential for ensuring
the long-term reliability and functionality of the dance pad custom electronics. A failure
in a solder joint or a misplaced component could lead to intermittent or total failure of
the device during use.

IPC-A-610 defines three classes of product quality, reflecting the intended life cycle and
operational environment of the assembly. Class 1 is for general electronic products
where the primary requirement is the function of the completed assembly. Class 2 is for
dedicated service electronic products requiring extended reliability and continued
performance, where uninterrupted service is desired but not critical. Class 3 is for high
performance or harsh environment electronic products where continued high
performance or performance-on-demand is critical. For this project, Class 2 was
established as the target quality standard. As a game controller subject to physical
impact and repeated use, a high degree of reliability is necessary to ensure a consistent
user experience.

The criteria of IPC-A-610 were applied during the hand-assembly and inspection
phases of the custom electronics. All solder joints were created with the goal of meeting
Class 2 acceptability criteria. This includes ensuring proper wetting on both the
component lead and the PCB pad with a contact angle of less than 90 degrees, forming
a concave solder fillet, and avoiding common defects such as cold joints, disturbed
joints, excess solder, or solder bridging between adjacent pads. Meticulous care was
taken during component placement to ensure correct orientation for polarized
components, such as diodes and electrolytic capacitors. All components were placed
centrally on their respective land patterns on the PCB before soldering, as specified by
the standard. Following assembly, each board underwent a thorough visual inspection
using magnification and proper lighting. This inspection verified that solder joints were
acceptable and that no foreign object debris, such as stray wire clippings or solder balls,
was present on the board. Furthermore, the boards were cleaned with isopropyl alcohol
to remove flux residue, which can be corrosive over time and can lead to electrical
leakage paths, in alignment with IPC standards for post-assembly cleanliness. By
targeting IPC-A-610 Class 2 workmanship, the project ensures that the assembled

95

electronics are not only functional but also robust and reliable, capable of withstanding
the demands of their intended application.[41][42]

4.1 IEC 62471 - Photobiological Safety

When designing the LED panels, it was important to verify whether the system adhered
to relevent photobiological safety standards. IEC 62471 is an internationally recognized
framework standard that defines safety evaluation criteria for optical radiation, including
visible, ultraviolet, and infrared sources. The purpose of this standard is to ensure
systems protect human eyes and skin from photobiological hazards associated with
artificial light sources, such as LEDs. IEC 62471 classifies systems into risk groups
based on their radiometric output and potential health hazards, ranging from Exempt
(RGO) to Risk Group 3 (high risk). [14].

For S.T.E.P.S, 850 nm infrared LED strips are being used to provide active illumination
for pose detection. Since 850nm is near-infrared and partially outside of the visible
range, it is still covered by IEC 62471, which encompasses wavelengths between 200
nm and 3000 nm.[14] The LEDs being used are placed approximately 1.8 meters from
players. According to industry summaries of IEC 62471, systems using 850nm LEDs
typically fall within Risk Group 1 provided their radiant exposure stays below the
established safety thresholds. [14]

Although minimizing the radiant flux is recommended to comply with IEC 62471, in this
project the actual risk is very minimal. The 850nm LEDs are partially visible, mostly
safe, and extremely common in consumer motion-tracking systems. The player distance
of 1.8meters, combined with time-multiplexing and wide distribution of LEDs, means
that the design itself is very low risk and well within Risk Group 1. No hazardous
exposure conditions are expected.

4.2 1ISO 9241-210 - Ergonomics of human-system interaction

Another important standard was ISO 9241-210. ISO 9241-210 defines principles for
designing interactive systems with a focus on user comfort, safety, and
effectiveness.[13] This standard is relevant to the illumination system because it
emphasizes minimizing discomfort. Glare, and distractions. It is important that the
system does not affect the player’s comfort. Avoiding glare and minimizing distracting
illumination effects is important for user comfort and effectiveness. The system will
follow 1ISO 9241-210 by ensuring the LEDs do not produce visually uncomfortable
brightness (by selecting 850nm over visible white), by time-multiplexing zones to
prevent perceptible filcker, and by mounting the arrays to avoid direct illumination into
the players’ eyes. Together, these measures support a user-centered design that
prioritizes both an enjoyable and non-distracting gameplay experience.

96

4.3 IEC 60598 Luminaires

The final standard considered is IEC 60598. IEC 60598 specifies safety requirements
for luminaires with respect to electrical, thermal, and mechanical hazards[15]. Although
originally written for traditional lighting fixtures, its principles remain relevant due to the
LED arrays function as a luminaire in the player environment. The system will follow
these guidelines by ensuring properly rated wiring, insulation, and current-limiting fuses
to prevent electrical shock, overheating, or mechanical failure. Given that the proposed
12V LED illumination operates at low voltage with moderate current, no additional IEC
60598 certification is anticipated beyond following standard best practices.

Finally basic electromagnetic compatibility considerations (EMC) practices were
considered to ensure the LED driver circuitry does not interfere with the camera system.
The PCB will include standard layout practices such as decoupling capacitors and solid
grounding to reduce any risk of electrical noise affecting camera performance.

Table 4.1 Optical and illumination standards

Standard Purpose Relevant Risk Level Design Impact
Wavelength In S.T.E.P
IEC 62471 Photobiological | 200-3000nm RG1 (Low 850nm IR LED
LED Safety Risk) selection,
distance
testing
ISO 9241-210 | Human-system | Visible spectrum N/A Zone lighting
interaction layout, glare
ergonomics avoidance
IEC 60598 Electrical Electrical/thermal | N/A PCB layout,
safety for fuse integration
luminaries

4.4 Optical Design Constraints

The main design constraint for the optical system is achieving a sufficient horizontal
field of view (HFOV) and depth of field (DOF) to cover the entire dance pad array. The
system must monitor a 2.9 m * 2.9 m play area from a camera mounted approximately
1.8m away. This geometric requirement translates to a horizontal field of view of
approximately 93°, based on trigonometric calculations. Maintaining this coverage
ensures that all nine dance pads remain consistently visible to the pose estimation
algorithm at all times. Minimizing the possibility of tracking errors or missing key player

97

landmarks. To achieve this constraint, a 3mm focal length aspherical lens was
designed, balancing the need for wide-angle capture with minimal distortion and
acceptable pixel resolution. This design choice guarantees that the system can
consistently and reliably observe the entire interactive area without gaps, which is
essential for gameplay accuracy and user satisfaction.

With a 93° FOV covering the dance pad array, each pad will occupy a relatively small
number of pixels in a 1080p frame. This means there will be a trade-off between
covering a large area and maintaining enough pixel density for precise pose detection.
The 3 mm aspherical lens balances this trade-off by providing wide coverage while
maintaining acceptable pixel density to allow MediaPipe to resolve key landmarks with
adequate clarity. This constraint ensures that gameplay remains responsive and
reliable, without introducing latency or missed detections.

The physical placement of the camera module is another important constraint. The
camera must be positioned to achieve the target field of view while avoiding occlusions
caused by player movements, and minimizing distortion. The camera is planned to be
mounted at the average torso height of approximately 1-1.5m above the floor, and
angled downward to encompass the entire 2.9 m * 2.9 m player tracking area, This
position balances both the horizontal and vertical FOV requirements while maintaining a
natural perspective of the player’s posture. It also helps minimize motion blur and
ensures that MediaPipe receives high-quality data without key body joints being blocked
by sudden movements. Consistent, predictable mounting geometry is essential to
calibrate the tracking system and maintain performance between game sessions.

Uniformity of illumination is a critical design constraint to ensure that MediaPipe’s Al
pose estimation functions accurately across the entire play area. A non-uniform lighting
pattern with hotspots or dark corners could cause the system to lose track of the player,
reducing gameplay accuracy. An issue that could arise in dimly lit rooms such as some
arcade enivronments. The target uniformity is specified as at least 85%, ensuring that
the lowest illuminated areas maintain at least 85% of the brightness of the most
illuminated regions. To achieve this, the LED layout was designed to distribute light
evenly, with time-multiplexed zone activation reducing local overheating and maintaining
consistent brightness throughout the tracking space. During testing, uniformity will be
verified by analyzing pixel intensities of a calibration target using the camera sensor, as
a practical substitute for more complex photodiode measurements. This constraint
supports a robust, repeatable, and comfortable user experience.

The power consumption of the LED-based illumination system was considered to
ensure the system operated within reasonable current limits while maintaining efficient
performance. Time-multiplexing was adopted to keep the instantaneous current per
zone modest, simplifying the PCB layout and reducing any potential thermal buildup. By
activating only one lighting zone per camera frame (at 120 fps with an 8.3 ms frame
duration), and cycling through all four zones every 33 ms, the system limits
instantaneous current draw 1.5A per zone instead of a peak 6A if operated
simultaneously. This strategy supports simpler, more reliable driver electronics while

98

ensuring consistent illumination without perceptible flicker for the pose detection
algorithm.

In addition to technical constraints, practical considerations such as development time,
budget limitations, and component availability also influenced the optical system design.
Considering the project operates within a constrained academic timeline of two
semesters, the number of design iterations is limited. Creating a fully functioning
prototype within that time frame emphasizes the need for early, informed component
selection. Economically, the system had to remain affordable, which excluded expensive
custom optics or high-end machine vision cameras. Off-the shelf M12 lenses and
commercially available LED modules were selected to strike a balance between cost
and performance. Furthermore, all components had to be available lab tools and
fabrication resources,minimizing custom machining or advanced calibration procedures.
These constraints shaped the design process, ensuring that the final optical system
remains technically sound and feasible to replicate with a modest engineering budget
and time frame.

Table 4.2 Optical and lllumination Design constraints

Design Constraint Requirement Justification/Notes

Horizontal Field of View = 93° to cover 2.9 mx 2.9 | Ensure entire play area is

(HFOV) m player tracking area at visible without blind spots
1.8 m distance or occlusion

Focal Length ~ 3 mm (aspherical M12 Balances wide coverage
lens) with acceptable pixel

resolution (=3pixels/mm)

Pixel Density > 3 pixels/mm Required to resolve ~1Tmm
player features for
MediaPipe tracking
Camera Height & Angle 1.0-1.5m, angled 15-20° Captures full body while
downward minimizing occlusion and
distortion
lllumination Uniformity = 85% brightness Prevents tracking dropout
uniformity across play area | due to hotspots or dark
zones
Power Consumption < 1.5 A per LED zone, < 18 | Ensures thermal safety
W per zone and simplifies driver

circuitry with
time-multiplexing

99

Design Constraint Requirement Justification/Notes

Time-Multiplexed IR Zones | One zone active per frame | Avoids flicker and reduces
(60 FPS — 16.7 ms per peak current draw while
frame, 4-zone cycle = 66.8 | maintaining seamless

ms) illumination
Budget Off-the- shelf components | Avoids costly custom
only optics and enables faster,

more reliable prototyping

Development Time Completed within Limits iteration cycles,
2-semester academic emphasizing early,
schedule well-informed design

decisions.

Component Availability Compatible with available | Reduces need for
lab equipment and tools machining or specialty

alignment fixtures.

4.5 Design Trade-off: Full Coverage vs. Low Distortion

4.5.1 FOV Lens comparison

A critical decision in the optical system design was selecting between two M12 lenses:
the CIL0O34 (3.2 mm, 87° HFOV) and the CIL329 (2.8 mm, 120° HFOV). From the fixed
camera mounting distance of 1.83 m , the system requires a horizontal field of view of at
least 93° to fully encompass the 2.9 m- wide tracking area. While the 120° lens easily
satisfies this requirement, it introduces significant barrel distortion near the edges of the
frame. This distortion can negatively impact pose estimation by warping limb
proportions or causing landmark misinterpretation near the periphery.

In contrast, the 87° lens provides lower optical distortion and higher pixel density across
the player’s body, enhancing the quality of MediaPipe’s pose recognition, particularly in
the central tracking zone. Although it offers slightly less edge margin than wider-angle
options, it still captures the full dance pad area from the 1.8m distance with minimal
distortion..

After evaluating these trade-offs, the 3.2 mm (87°) lens was selected due to its sharper
central imaging, lower distortion profile, and sufficient coverage for solo gameplay,
where players tend to remain within the central region. This design choice prioritizes
pose detection fidelity and image quality over more peripheral buffer coverage, a
compromise deemed acceptable for the current gameplay design. Future revisions may
consider distortion-tolerant tracking models or higher resolution sensors to
accommodate wider FOVs without compromising detection accuracy.

100

4.5.2 Distortion Impact on Al Performance

The selected CIL034 lens specifies <0.1% distortion and is classified as rectilinear,
meaning it maintains straight lines across the field. This helps reduce issues such as
wrapping of limbs or landmark displacement at the edges of the frame. Although
distortion is more pronounced in ultra-wide lenses like the 120° model, the chosen 87°
lens ensures spatial consistency in landmark tracking. While MediaPipe has some
tolerance for distortion, retaining geometric fidelity in the player’s body structure
improves joint prediction confidence and minimizes tracking errors. If wider coverage is
required in future iterations, software correction (e.g. OpenCyv lens calibration) could be
considered to compensate for edge warping without hardware changes.

5. Comparison of Al Engines

5.1 Case Studies

The goal of using various Artificial Intelligence engines is to see various aspects of
information given by Artificial Intelligence and compare them with one another. One
main question that was asked to the 4 engines used was: What would be the best way
to create a rhythm game for a beginner? Would using a game engine be best or are
there other alternatives to complete this objective? The reason for the prompt was to
find out what would be the best way to create a rhythm game for a project of this
magnitude. We have heard of game engines that existed just as Godot, Unity, Unreal
Engine, and Scratch, however we wanted to see which of those listed are beginner
friendly. Furthermore we wanted to see if Artificial Intelligence would have
recommended any other sources that aren't game engines that exist that are also
beginner friendly that could be used to accomplish our objective. What we found were
the following responses from each Artificial Intelligence engine when given the prompt
above.

Some more case studies we can look at are regarding our hardware. While we know
that we need an MCU, we want to see what MCU works best for a design, so we also
asked the 4 engines the following: What MCU would be best to run a 9 directional
dance pad that can connect to a PC via USB, while also being able to communicate to
an LED driver to switch an LED panel on and off? The purpose of this prompt is to see
what our best options are and how they are the best options, in order to narrow down
our research as there are multiple options to choose from.

Another case study we can look at is regarding our dance pad panel sensors. Much like
our MCU, we asked the 4 engines the following: What type of dance pad panel sensor
is best used in arcade grade dance pads and DIY dance pads? The purpose of this
prompt is to see what is typically used so that we have a general idea of what the most
common types are, so that we can narrow down our research.

101

The other case study that we asked each of the different Artificial Intelligence large
language models was: How can we implement computer vision into a dance rhythm
game using a camera? The reason for this was to choose how we can implement
existing computer vision technology into the game after.

The last case study we asked to the Large Language Models was: How can we
implement rhythm synchronization into a Godot project?

5.2 ChatGPT

After looking at ChatGPT’s response to the rhythm game question asked, some very
helpful information was given in regards to what we can use for designing the game.
ChatGPT said that game engines are a recommended resource that can be used for
those who are coding games as a beginner. Game engines are able to help users with
difficult portions of game design with aspects such as inputs and audio being hard to
use . The ones that ChatGPT recommended were Unity and Godot with scratch being
added as well. [23]

Regarding MCU selection, ChatGPT offered a list of MCU with their pros and cons, as
well as what they are best for. This is a good thing because it helped narrow our
research better. It also goes over LED Driver Options, and USB HID vs Serial, little
things to keep in mind. Lastly, ChatGPT recommended Teensy 4.0 and Arduino
Leonardo for plug-and-play USB controller functionality, responsive LED control, and
easy development. However, Raspberry Pi Pico or STM32F103 (Blue Pill) is best if we
want more power and flexibility. [23]

For our dance pad sensor question, we got a list of the most commonly used and
presumably most effective panel sensor types. ChatGPT listed each type, what they’re
best for, where they are used in, how they work, and pros and cons. ChatGPT does
pretty well summing up the key features of each sensor, as well as providing useful
information. However, the provided information is still general, mainly used as a base for
research. After all the listed types of sensors, ChatGPT recommended different sensors
depending on their use case (i.e., arcade-quality, DIY (budget), and DIY (premium))

After asking ChatGPT the question of: How can we implement computer vision into a
dance rhythm game using a camera?, important information such as “core components”
were given which included a camera, Computer Vision models such as MediaPipe,
OpenPose, and Movenet were given, as well as how to implement these aspects into
the game itself.[23]

Furthermore, ChatGPT gave us additional help as to how to the game should flow when
implementing the Computer Vision models with the example of loading a song with a
predefined chart, have the camera be able to detect player poses, and during each beat
window, give a score depending on the threshold set, and have that score be reflected

102

and shown on screen. This gives an idea of what we ourselves could use for the game
implementation of the computer vision side.[23]

ChatGPT gave us an extensive and thorough explanation as to what we could add for
the rhythm game synchronization aspect of the game. It gave us some steps as to how
to add a music track, set the BPM for the song, add a timer, and have an on beat
function. Furthermore what ChatGPT gave us an idea with , is thinking of how to
implement with the game as a whole having a mapping of the series of arrows put onto
the game. Using a .beatmap file or a JSON file would be most helpful with JSON being
easier to do using a script to create a JSON file after pressing a series of buttons.

5.3 Google Gemini

Google Gemini gave us a more indepth look as to why game engines would be the best
resource to use when creating a rhythm game. Google Gemini explains that game
engines handle much of the work in regards to audio synchronization, inputs, and have
communities that contain many forums, tutorials, and other useful tools for creating
games. The game engines that Google Gemini recommended were similar to those of
ChatGPT, including Godot and Unity, however did not mention scratch but rather
mentioned GameMaker Studio. [25]

Google Gemini, much like ChatGPT, listed a few MCU options with pros and cons. It
listed down each MCU’s key features. Additionally, Gemini also listed down key
considerations for our project. In the end, Gemini recommended Arduino Leonardo or
Adafruit ItsyBitsy MO/M4.

Moreover, this time around, after searching our dance pad sensor selection question,
we were not provided a pros and cons list. Instead, the best options are explained as to
why they are best for certain cases - listing their key features and things to consider as
we're deciding (e.g. weaknesses of the sensor). After listing the best options, it also
listed less common and emerging options just to provide us more options. While Gemini
was a lot more informative with this approach, it did not provide enough comparison
between the different types, more specifically, a comparison table could’ve provided
more clarity to what has been stated. In the end, Gemini recommended FSRs for both
arcade-grade and DIY dance pads.

Similarly to ChatGPT, Google Gemini also gave us the idea to use MediaPipe or
OpenPose for computer vision libraries that would be useful for camera integration,
furthermore, Google Gemini also gave us an additional source of YOLO that also can
be manipulated and changed to be able to include pose detection. Google Gemini then
goes into how to obtain the data and process it using the camera's input and processing
the information frame by frame into the computer vision library of choice. [25]

On the aspect of implementation with the rhythm game itself, Google Gemini

additionally gave us information as to how to implement matching the pose to the given
reference that we give it. There are many examples that were provided such as:

103

"Euclidean Distance”, “Cosine Similarity”, “Dynamic Time Warping” or through “Machine
Learning/Deep Learning” [] For the game logic side, Google Gemini recommended
having rhythm synchronization as well as visual feedback. We believe this can be done
using some on screen text or prompt depending on the timing showing how well they
performed the certain pose when told. The way to implement the pose timing is by
having a silhouette of the pose itself on screen to indicate to the user which pose will be
the one to pop up which thankfully was an idea that Google Gemini itself gave us as an
option to use.

With Google Gemini, the benefits of using it to ask the question about rhythm
synchronization, was that it gave us the core concepts of what we would need to include
for rhythm synchronization to be accomplished in Godot. The concepts that are included
are:

Audio Playback
Latency Compensation
BPM

Event Scheduling
Conductor System

What Gemini also gives us are ways to implement each of these aspects. For example
adding the Audio Stream Player, creating the conductor system, even how to add a
rhythm notifier asset from the Godot asset store. Each of these aspects that Gemini
gives us, helps us understand how to implement them and what process to complete it.

5.4 Microsoft Copilot

Microsoft Copilot was not a very useful tool as it gave similar information to ChatGPT
and Google Gemini in regards to which game engines to use and had no deviation in
regards to that information. Using a no-code design would not be useful for us and we
would not be accessing the web for our project thus both section 2 and section 3 do not
apply to our project.[24]

Microsoft gave options much like ChatGPT and Gemini, however, instead of listing pros
and cons, it made a comparison table of each MCU’s features (e.g., USB support, GPIO
pins, etc.). It summarized that the given options had LED driver compatibility and dance
pad input support, as well as other information to keep in mind regarding them. In the
end, Microsoft copilot did not recommend a best-of-the-best MCU, instead just shared
all options as the best for the design.

For our dance pad sensor question, Microsoft copilot was unique in that it provided
actual products from actual shopping websites, although they were not useful at all. For
instance, Microsoft sent product details on a whole functioning dance pad, and corner
panel mounts. The question was to find the best sensors, yet it provided actual dance
pads that already exist. However, afterwards, Microsoft copilot does go over the
different types, but only the smallest amount of key features, though very generic and

104

hard to understand. Microsoft copilot lacked in explaining meaningful information. In the
end, Microsoft copilot recommended conductive plate sensors or Chinese arcade dance
sensors for arcade-like feel, FSRs for customization and tech integration, or 3D printed
spring sensors for an affordable and creative build.

Microsoft Pilot was not very useful after using both ChatGPT and Google Gemini as it
gave very similar information on the topic. However, the one positive aspect of using
Microsoft Pilot was the chart that it gave.

Table 5.1 Microsoft copilot Computer Vision Table

Tool Use Case Why It Works Well

MediaPipe Fast pose detection Lightweight &
cross-platform

Unity + Barracuda Game dev + ML model Familiar workflow,
integration compatible with C#

OpenCV Image processing & Open-source, powerful CV
camera control toolkit

This gives very insightful information based on what we need in terms of computer
vision. Whether that be to use MediaPipe, Unity and a machine learning model called
Barracuda or another type of computer vision model, or using OpenCV. Each of these
options have their strengths and weaknesses.

MediaPipe for example has fast pose detection and is lightweight however there could
be the possibility that it is not as accurate as other computer vision algorithms like
OpenCV. OpenCV is open-source and has the possibility of Image Processing and
Camera Control so it is another source we can research to see if it would be the right fit
for us.

Microsoft Pilot gives us something very similar to both Gemini and ChatGPT that
recommends us to use an AudioStreamPlayer, create a JSON beat map, and have
some sort of timer that allows for calibration for the timing.

Furthermore Pilot gives us a chart of different techniques as to how to make the project
better and more efficient.

105

Table 5.2 Microsoft copilot Rhythm Synchronization Table

Technique Benefit
Audio latency Adjust for input delay on different devices
compensation

MIDI or beat detection Automate beatmap creation from music
tools

Godot plugin ecosystem | Explore tools like BeatDetector or custom modules for
audio analysis

5.5 DeepSeek

DeepSeek gave us the most amount of information regarding the game engine and the
rhythm game. It recommended Unity and Godot as the top 2 choices for deciding which
game engine to use, however it also included Unreal Engine which is a common game
engine that is used. Furthermore DeepSeek also gave us insightful tips as to how to
proceed with the game design of the rhythm game itself. These tips include starting
small and afterwards adding more features, following online tutorials for the game
engine of choice, and also attempting prototyping with different aspects that will be
implemented.[26] DeepSeek was the most helpful in this case and had a positive
outcome on how we continued with the project.

DeepSeek was almost similar to that of ChatGPT and Gemini’s response, in that it not
only listed pros and cons of each MCU, but also what they’re best used for. However,
DeepSeek did not list enough information explaining each MCU, nor do they use a
comparison table for better clarity. Not enough numerical specifications are mentioned,
leaving us wondering what else to keep note of like GPIO pins, or ease of assembly. In
the end, DeepSeek recommended Raspberry Pi Pico for its best balance of price and
features, or Arduino Pro Micro for its ease of use and plug-and-play USB functionality.

Regarding the dance pad sensor question, DeepSeek was almost exactly like ChatGPT.
DeepSeek listed each of its best options and their pros and cons. However, much like
ChatGPT, the listed pros and cons or additional information were lacking and only
provided as a base for our research. In the end, DeepSeek mainly recommended FSRs,

106

whether it be DIY using conductive material and Velostat, or the actual hard component
of FSRs.

When it comes to the question of how to implement computer vision to our project with a
camera, Deepseek, similar to ChatGPT and Copilot, gave us ways to implement pose
detection using computer vision models such as MediaPipe or OpenPose, using
keypoints to track movement joints, and have a coordinate system with those joints
detected. Furthermore Deepseek went into more depth as to how to continue with the
project through tracking, rhythm synchronization, scoring and validations, game
interface, and even implementations with how to accomplish our goal. What is good
about deepseeks answer was how it was able to explain the different aspects that we
should take into consideration without giving us the way to do it and have it work it
ourselves.

With regards to the question “How can we implement rhythm synchronization into a
Godot project?” Deepseek had a different approach as to how to help us with this
question specifically. Deepseek had the idea of telling us exactly what it is that we need
to implement in our game project in terms of scripts as well as the different settings to
change in our project settings. This, although helpful, wasn't what we were looking for,
but more so ideas as to how we can accomplish our goals and we were looking for
more ideas that could work and not the implementation done for us.

5.6 Conclusion

Using these Artificial Intelligence systems gave us a lot of information as to where we
can start on the software side of creating the rhythm game, as well as the hardware side
in terms of finding the best MCUs and dance pad sensors for our design. All four
engines agreed that using a game engine is the most beginner-friendly and effective
approach for a project of this scale. The most commonly recommended engines were
Godot, Unity, and Unreal Engine, with Godot especially noted for being lightweight,
open-source, and beginner-friendly with strong 2D support.

For MCU selection, there was a consistent set of recommendations across engines.
ChatGPT suggested Teensy 4.0, Arduino Leonardo, Raspberry Pi Pico, and STM32
boards, highlighting USB HID support and LED driver compatibility. Gemini emphasized
Arduino Leonardo and Adafruit ItsyBitsy M0O/M4, while also listing key considerations
like GPIO availability and ease of development. Microsoft copilot provided a feature
comparison table without a definitive recommendation but confirmed all listed options
were suitable. DeepSeek leaned toward the Raspberry Pi Pico for value and features or
Arduino Pro Micro for ease of use and plug-and-play functionality.

For dance pad sensors, most engines leaned toward FSRs for both arcade-grade and
DIY builds. ChatGPT and DeepSeek offered structured pros and cons and discussed
budget vs. premium DIY builds. Gemini explained why certain sensors were ideal and
even mentioned less common alternatives but lacked side-by-side comparison.
Microsoft copilot stood out for mentioning physical products (though some were

107

unrelated), and ultimately recommended FSRs, conductive plate sensors, and
3D-printed spring sensors, offering a broad range of creative solutions.

Al tools were instrumental in our project's development. For computer vision, Google
Gemini helped us weigh the benefits of MediaPipe (lightweight, fast) against OpenCV
(open-source, camera control) and suggested implementation ideas like pose
indicators. For our Godot-based game, LLMs provided a framework for rhythm
synchronization, with ChatGPT suggesting core functions and Gemini recommending
visual feedback. Ultimately, this guidance provided a strong foundation, helping us
efficiently choose the right game engine, MCUs, and sensor technology for our
9-directional dance pad.

For implementing computer vision, the majority recommended using MediaPipe or
OpenCV as our computer vision model of choice. Additionally they gave us more
information as to how to apply computer vision to the game. Whether that be through
having silhouettes or some type of indicator to show that a pose is popping up. The
Large Language Model of Google Gemini was extremely helpful when giving us a chart
of the different computer vision models to use by explaining how MediaPipe is
lightweight and has fast pose detections while OpenCV is open source and has good
camera controls. It helped us have an idea of which ones can be used and what we
should research more on.

For implementing rhythm synchronization the Large Language Models were very useful
in helping us have a start and think about how to implement the synchronization. Due to
this point having chosen Godot as our game engine of choice. The models gave us
insight as to how to implement the synchronization by telling us various aspects that we
must keep in mind when creating this. For example, ChatGPT recommended to add a
music track, set the BPM for the song, add a timer, and have an on beat function when
creating the synchronization.[] Google Gemini further expands on this by explaining how
some visualization of synchronization existing would improve the quality of the project.

In the end, these Al tools provided a strong foundation for choosing not only the right
game engine, but also the most suitable MCUs and sensor technologies for
implementing our 9-directional rhythm game dance pad, helping us focus our research
and development efforts effectively. It additionally helped us decided the best course of
action in regards to both how to use computer vision for our project and how to
implement rhythm synchronization which is integral to any rhythm game.

108

6. Hardware Design

6.1 Dance Pad Master Controller Board

7
TO_INPUT_TILES

ca W Gip

£00nF £00nF.
0 PHR_FLAG
R2 o <4
€3 10k
22pF

alyfuse
GND g8¢ wusB
Breser 37 % peofix
F’—| pa1fs PA1
7 s pa2 [0 pE
GND = Y RL pas L PB3 o R4
B T 16 NHz Crystal M 18 yra e VBUSH 5.1k +| c1z 13 g
uF it
Ccze—=2 B

%7—| 42 pReF P86
o L PB7

GND @ 100nF: PWR FLAG (—YUSB_ Tlygys
22pF N PCE
B Lo+ pC7
[El P

AGHD PDO
&1 ucap PD1

= FERF

FF

GND

fa
]
2

F
FEEEEF FF FEEPEE

OB 0
Yk GREEN LED
7

GhD

U3
B ATmega32U4RC-A

N 0 PWR_FLAG
UGND Blake Whitaker

< Senior Design
GND Group 8

Sheet: /Master Controller/

B File: untitled.kicad_sch D

Title: Master Controller

Size: Al [Date: | Rev:

KiCad E.D.A.9.0.2 ‘ Id: 2/4
3 I

Figure 6.1 Dance Pad Master Controller Board Schematic

Core Functionality

This PCB is designed to be the “Master Controller” for the 9-tile dance pad game. In this
modular design, this board's primary purpose is to act as the central brain or manager. It
communicates with the host PC via USB, receives power from the Power Hub, and
manages all nine smart Tile Boards over an 12C communication bus.

Circuit Breakdown

The heart of the board is an ATmega32U4RC-A microcontroller, designated as U1. This
chip was chosen specifically because it has native USB capabilities, allowing it to easily
communicate with a PC as a game controller without needing extra chips. A 16 MHz
crystal oscillator, Y1, along with its two 22pF loading capacitors, C1 and C2, and a TMQ
parallel resistor, R1, provides a precise and stable clock signal, which is essential for
reliable USB communication. A simple pushbutton, SW1, is connected to the RESET

109

pin, along with a 10kQ pull-up resistor, R4, and a protection diode, D1, to allow for a
manual reset during testing and development. A 6-pin header, J4, serves as the
In-Circuit Serial Programming port, with its sole purpose being to allow the initial
programming of the Arduino bootloader onto the fresh ATmega32U4 chip.

The USB interface section handles the data connection to the host computer and is
designed to be very robust. A USB-C Receptacle, J2, provides the physical connection.
This connection is protected by a 500mA resettable polyfuse, F1, which prevents the
board from drawing too much current and damaging the computer's USB port. ESD
protection diodes, D2 and D3, are placed on the D+ and D- data lines to guard the
microcontroller against static shocks. Two 5.1kQ pull-down resistors, R2 and R3, are
connected to the CC1 and CC2 pins; this is a critical part of the USB-C specification that
identifies the board as a device to the host computer. A ferrite bead, FB1, filters noise
on the USB cable's shield connection.

The board receives its power from the external “Power Hub” board and carefully filters it
for stable operation. The board is powered by a stable +5V and GND supplied via the
3-pin connector J7. To ensure clean power for the microcontroller's internal analog
components, the AVCC pin is filtered through a ferrite bead, L1, and a 1uF capacitor,
C3, which creates an LC low-pass filter to isolate it from noise. Several 100nF
capacitors are placed near the chip's various power pins to filter out high-frequency
noise and ensure stable operation. PWR_FLAG symbols are directives for the design
software, confirming that the +5V, GND, AGND, and VUSB nets are intentionally
powered, which resolves common electrical rule check errors.

This board serves as the central hub for all external connections. The 3-pin “Power
Hub” Link connector, J7, receives +5V and GND to power this entire board, and it sends
the PWM signal from pin PC6 to control the TV's IR illumination. The 12C Bus Output,
J3, is a new, critical 4-pin connector for the modular design that serves as the starting
point for the bus that connects to all nine “Input Tile” boards. It provides +5V and GND
to power the entire chain of tiles and connects to the ATmega32U4's hardware 12C pins,
PD1 for SDA and PDO for SCL. A simple green "ON" LED, connected via a 1k resistor,
provides a quick visual confirmation that the board is powered on.

110

6.2 Power Hub Board

uuuuu

D6 7]
1N5822

I BuF
GND
4
6lyee =
£ ch 3 EN/DIM
I 1uf
GND

Sheet: /Pawer Hub/
g File: untitled2.kicad_sch P

Title: Power Hub

Size: Al [_Date: [Rev:
KiCad E.DA. 9.0.2 [6 37%
L] I

Figure 6.2 Power Hub Board Schematic
Core Functionality

This PCB is designed to be the central “Power Hub” and high-current driver for our
dance pad project. Its primary purpose is to take a single 12V input and safely distribute
power to all other parts of the system, while also controlling the high-power IR LEDs for
the computer vision system.

Circuit Breakdown

The circuit's main power input is a standard DC Barrel Jack, J1, which accepts 12V DC
from an external wall adapter. A 100uF capacitor, C1, is placed directly across the input
to smooth out the incoming 12V supply and filter out any low-frequency noise or ripple
from the power brick, providing a more stable input for the rest of the circuits.

This board creates the stable 5V needed to run the “Master Controller” board. This is
accomplished by U2, an LM2576T-5, which is a highly efficient 5V switching buck
regulator. It takes the 12V input and steps it down to a constant 5V output. A switching
regulator was chosen over a linear one because it is far more efficient and generates

111

significantly less heat. The circuit includes an input capacitor C2, a 1N5822 Schottky
diode D1, a 100uH inductor L1, and a large 1000uF output capacitor C3. These
components are required by the LM2576's datasheet to form the complete buck
converter circuit. The regulated +5V is sent to the “Master Controller” board via the 3-pin
connector J2. A green "ON" LED, powered through a 1kQ resistor R34, provides a
simple visual confirmation that this 5V supply is active.

The most advanced part of the board is the constant-current IR LED driver. The driver
IC U1, an MP24894, is the brain of this circuit. It receives a PWM signal from the
“Master Controller” and uses it to control the brightness of the LEDs. The MP24894
sends a precise drive signal from its DR pin to the gate of an external N-Channel
MOSFET, Q1, which acts as the main switch for the high-power LEDs. The IC
constantly monitors the current flowing through the LEDs by measuring the voltage
across the sense resistor, R_SENSE, and adjusts the switching of the MOSFET to keep
the current stable. A 2-pin screw terminal, J3, provides a secure physical connection
point for the wires from the external 12V IR LED strip.

The 3-pin connector, J2, is the vital link between the “Power Hub” and the “Master
Controller”. Pin 1 sends the regulated +5V power to the controller board. Pin 2 provides
the common ground connection between the two boards. Pin 3 receives the PWM
control signal from the controller board, which is then sent to the EN/DIM pin of the
MP24894 driver to control the IR LED brightness. In summary, this board acts as a
robust and intelligent power distribution center, ensuring both the controller and the
high-power LEDs get the clean, regulated power they need to operate reliably.

6.3 Input Tiles Board (x9)

Figure 6.3 Input Tiles Board Schematic

112

Core Functionality

Nine of these identical boards will be manufactured, each of these custom PCBs are
designed to be a modular "smart tile" for the 9-tile dance pad game. with each one
responsible for the sensing and lighting of a single tile.

Circuit Breakdown

The core of the Tile Board is an ATtiny85 microcontroller, designated as U4. This small,
8-pin chip acts as the local brain for the tile. Its primary functions are to continuously
read the pressure sensors, control the on-board aesthetic LEDs, and communicate with
the “Master Controller” board over an 12C bus. A 100nF capacitor, C15, is placed across
the microcontroller's power and ground pins to decouple the power supply, ensuring
stable operation by filtering out high-frequency noise.

The board features two independent analog sensor circuits to read from two separate
off-board Force-Sensitive Resistors. The first FSR connects to the board via the 2-pin
connector J7, where it forms a voltage divider with the 10kQ resistor R7. The resulting
analog voltage is read by pin PB4 of the microcontroller. The second sensor circuit is
identical, using the connector J8 and the 10kQ resistor R9, with its output read by pin
PB3 of the microcontroller. This dual-sensor design provides redundancy and allows for
more complex pressure sensing logic in the software.

Aesthetic and interactive lighting is provided by a chain of nine addressable
APA-106-F5 RGB LEDs, labeled D7 through D15. These LEDs are powered directly by
the board's 5V and GND nets. The data signal originates from pin PB1 of the
microcontroller and is daisy-chained from the Data Out of one LED to the Data In of the
next. The Data Out pin of the final LED in the chain, D13, is left unconnected. This
configuration allows the local ATtiny85 to have full, individual control over the color and
brightness of every LED on its tile.

Communication and power are handled via a 4-wire bus system, facilitated by two 4-pin
connectors, J9 for "Bus IN" and J11 for "Bus OUT". These connectors are wired in
parallel to allow the bus to be daisy-chained from one tile to the next. The bus provides
the +5V and GND to power the entire board. It also carries the two 12C communication
lines. The SDA line is connected to pin PBO of the microcontroller, and the SCL line is
connected to pin PB2. This allows the board to act as an 12C slave, responding to
commands from the “Master Controller”.

Finally, a 6-pin header, J10, serves as the In-System Programming port. This connector
is used exclusively for loading the initial firmware onto the ATtiny85 chip after assembly.
It connects to the VCC, GND, RESET, MOSI, MISO, and SCK pins of the
microcontroller, allowing an external programmer to interface with the chip.

113

6.4 System-Level Hardware Integration

While each of the three custom PCBs serves a distinct purpose, the true functionality of
the STEPS hardware emerges from their carefully orchestrated interaction. The system
architecture is a distributed network where power, control signals, and sensor data flow
in a coordinated manner between the “Power Hub”, the “Master Controller”, and the
nine “Input Tiles”. This modular approach is designed to create a robust and scalable
system.

6.4.1 Power Distribution and Regulation

The “Power Hub” board is the entire system's electrical focal point. A 12V DC signal
from an external power brick enters through the barrel jack (J1). This board immediately
splits the power into two main pathways, a High-Power Path (12V) is the raw 12V input
is routed directly to the high-current side of the board to supply the MP24894
constant-current LED driver circuit. This path is designed to handle the significant
current draw of the external infrared LED strips that border the external display used for
the computer vision system. The other path is a Low-Power Logic Path (5V) where the
12V input is also fed into an LM2576T-5.0 switching buck regulator (U2). This highly
efficient regulator steps the voltage down to a stable, clean +5V. This 5V rail is essential
for all the logic-level components in the entire dance pad.

From the Power Hub, this regulated 5V power, along with a common ground, is sent to
the Master Controller Board via a 3-pin JST connector (J2 on the Power Hub, J7 on the
Master). The Master Controller then becomes the distribution point for the rest of the
system. It uses this 5V to power its own ATmega32U4 microcontroller and then passes
the 5V and GND lines out through its 4-pin 12C bus connector (J3). This single
connector begins a daisy chain that delivers power to all nine Input Tile Boards,
ensuring every ATtiny85 microcontroller and its associated RGB LEDs receive stable
power.

6.4.2 Control and Data Flow

The flow of information is managed by the Master Controller, which acts as the central
nervous system. It communicates both with the PC and with its subordinate Tile Boards.

Each of the nine Input Tile Boards operates as an 12C slave device with a unique,
pre-programmed address. The ATtiny85 on each tile continuously monitors the voltage
from its two Force-Sensitive Resistors (FSRs). The “Master Controller’ acts as the
master to constantly poll each of the nine tile addresses in a rapid loop. When a tile
receives a request from the master, it sends back a small data packet containing its
current sensor readings. This distributed processing approach, where each tile
manages its own sensing, prevents the Master Controller from being burdened with nine
separate analog-to-digital conversions.

114

When the Master Controller receives data from a tile indicating a step has occurred
(FSR pressure has crossed a given threshold), its firmware processes this event. The
ATmega32U4 then uses its native USB capabilities to format the step data into a
standard Human Interface Device (HID) report which emulates a generic game
controller or keyboard input. This report is sent to the host PC over the USB-C
connection. The game software on the PC receives this as a simple button press,
requiring no custom drivers and ensuring maximum compatibility.

Communication on the 12C bus is bidirectional. The game can send commands back to
the Master Controller, which then relays these commands to the appropriate Input Tile
Board. For example, upon a "Perfect" step, the master can send a command to Tile #5
to trigger a flashing green light effect for example. The ATtiny85 on that tile receives the
command and drives its local array of APA-106 RGB LEDs to produce the desired visual
feedback.

6.4.3 Vision System lllumination Control

The control loop for the computer vision system's IR illumination demonstrates the full
integration of all three boards. First, the game logic on the PC determines that the IR
LEDs need to be activated. Second, the Master Controller's ATmega32U4 generates a
Pulse-Width Modulation (PWM) signal on pin PC6. The duty cycle of this signal
corresponds to the desired brightness of the LEDs. Third, this PWM signal travels from
the Master Controller to the Power Hub Board via the 3-pin JST link. Finally, on the
Power Hub, the MP24894 LED driver IC (U1) receives this PWM signal on its EN/DIM
pin. It interprets the duty cycle and drives the external high-power MOSFET (Q1)
accordingly, delivering a precise, constant current to the 12V IR LED strips.

In summary, the hardware operates as a cohesive, hierarchical system. The Power Hub
provides conditioned power, the Input Tiles act as localized sensor nodes, and the
Master Controller serves as the central aggregator and communicator, seamlessly
bridging the physical actions of the player with the software of the game.

6.5 Optical Imaging System Design

The optical subsystem is designed to reliably capture and analyze a player's full-body
movements in real time, enabling the system’s pose-based “Style Score” feature. This
subsystem integrates a global shutter camera, wide-angle lens, and an optimized
near-infrared (NIR) LED illumination system to provide robust visual tracking across the
entire play area.

The vision system must cover the 2.9m x 2.9m tracking area at a typical player distance
of 1.83m, maintaining a horizontal field of view of approximately 93°. This ensures
consistent landmark detection and minimizes distortion even at the edges of the field.

A time-multiplexed 850nm near-infrared LED system was selected to provide uniform,
comfortable illumination that is invisible or only partially visible to the player but reliably

115

detected by the camera. This design minimizes distractions while maintaining sufficient
brightness for accurate MediaPipe landmark tracking.

In alignment with the project’'s broader objectives stated in Chapter 2, the optical
subsystem emphasizes consistent player coverage, high image clarity, safe illumination,
and efficient integration with the vision-based scoring system. The imaging system is
designed to deliver high spatial resolution, wide field of view, and low-latency image
capture that supports real-time pose estimation. After evaluating multiple options, the
SVPRO AR0234 camera module was selected. This camera was selected based on its
technical specifications, including a 2.3MP resolution (1920 * 1200), 3um pixel pitch,
and frame rates up to 60 FPS over USB 3.0. The global shutter feature helps reduce
motion artifacts during rapid gameplay.

Given the player tracking area dimensions are 2.9m x 2.9m and the working distance is
1.83m, the optical system must maintain a horizontal field of view of approximately 93°
to reliably capture the entire play area with minimal occlusions. Commercial lenses with
longer focal lengths or narrow fields of view are impractical, since they would have
required either excessive installation height or more aggressive mounting angles to fully
capture the 2.9 m x 2.9m play area. To avoid these challenges, the system instead uses
a commercially available short focal length M12 lens that is approximately 3mm. It has
a diagonal FOV between 100-114 degrees. The key engineering requirements for the
optical subsystem are summarized in Table 6.1.

Table 6.1 Engineering requirements for the optical imaging subsystem.

Component Parameter Specification Unit
Camera a) Pixel Pitch a)3 a) um
b) Resolution b) 1920 x 1200 b) pixels
c) Frame Rate c) =260 c) FPS
Lens (M12 3mm) a) Focal Length a)3 a)mm
b) Horizontal Field of | b) 93 b)degrees
View
Optical Subsystem | a) Brightness a) 285 a)%
Uniformity
b) Resolution at 6ft | b) = 3 (resolving ~ | b) pixels/mm
1mm features)

As summarized in Table 6.1, the selected camera module and lens combination
achieves a pixel pitch of 3 ym with a resolution of 1920 x 1200 pixels, is sufficient to
meet the target of = 3 pixels/mm needed for ~1mm feature detection at a 1.83m
distance. The approximate 93° horizontal field of view ensures the full dance pad
remains visible, while the geometric distortion and brightness uniformity specifications
help preserve consistent landmark tracking across the entire field of play.

116

6.6 lllumination System Design

Consistent and uniform illumination is essential. In a dim arcade environment or under
changing lighting conditions, the system still needs to have consistent illumination of the
player. Therefore, relying on ambient light alone is insufficient for consistent pose
estimation. To account for this, an active illumination system was designed to provide
uniform coverage across the entire 2.9m x 2.9m player tracking area.

850nm near-infrared (NIR) LED strips were selected as the primary illumination source.
Near-infrared wavelengths are partially invisible to the human eye, minimizing player
distraction and discomfort while remaining fully detectable by the camera’s image
sensor, which does not have an IR-cut filter. This approach allows for reliable landmark
visibility for MediaPipe while not compromising on user comfort.

To further optimize power consumption and thermal performance, a time-multiplexing
strategy is being used. In this scheme, the dance pad area will be divided into multiple
LED illumination zones, with only one zone activated per camera frame. Cycling rapidly
at the camera’s frame rate of 60 FPS, resulting in a complete zone cycle every 17ms.
Because this frequency exceeds the human flicker fusion threshold, players and the
camera module will still perceive the illumination as continuous.

The selected LED strips are standard 12 V SMD-based products, offering good cost
efficiency and a wide choice of densities (typically 60-120 LEDs/m). Each strip is rated
at approximately 14.4 W/m, with power budgets calculated to keep the current draw
under 2A per zone. Table 6.2 summarizes the engineering requirements for the
illumination system.

Table 6.2 Engineering requirements for the illumination subsystem

Component Parameter Specification Unit
LED lllumination a) Wavelength a) 850 a) nm
b) Brightness b) 285 b) %
Uniformity
c) Beam Angle c) =120 c) degrees
d) Zone Switch Time |d) <17 d) ms
e) Power per Zone e)<18 e)W
lllumination System | a) Coverage Area a)29*29 a)m
b) Player Distance b) 1.83 b) m

As summarized in Table 6.2, the 850 nm LED strips are designed to deliver at least 85%
uniform brightness across the entire field of view, with a wide beam angle of = 120° to

117

minimize shadows. Time-multiplexing with a zone switch time of < 17 ms reduces the
total system load while maintaining a seamless visual.

Safety and photobiological compliance were also considered. IEC 62471 guidelines
were reviewed, and the selected 850 nm LED strips fall within Risk Group 1 at specified
radiant exposure and player distance. Although typically arcade lighting is rarely
completely dark, its variability, color saturation, and moving shadows make it unreliable
for consistent pose detection. Therefore, the NIR illumination system is necessary to
establish a stable, uniform baseline at the player’s distance of 1.83m. Providing radiant
intensity equivalent to at least 300 lux of visible illumination for consistent landmark
detection. Since the dance pad is intended to be portable for use in home settings, the
lighting conditions there could be even more unpredictable, ranging from bright windows
to dim living rooms. Including a controlled illumination system ensures consistent
MediaPipe performance regardless of whether the system is deployed in a commercial
arcade, dorm room, or any other household living space.

The camera module will be mounted at approximately 1.5m height with a downward
angle of about 15-20° to capture the full play area while minimizing occlusions from
player movement. The LED strips are currently planned to be mounted around the
monitor frame to provide even IR coverage while avoiding direct glare into the player’s
eyes. However, other LED mounting configurations will also be tested in SD2 to
determine the most effective combination of coverage uniformity, ease of integration,
and player comfort. The final arrangement will be chosen based on uniformity
measurements and practical field trails to ensure consistent landmark detection
performance.

6.7 Optical System Testing and Verification

The optical and illumination subsystems will be tested to confirm they meet the design
requirements described above. Testing will focus on verifying the horizontal field of view
covers the entire dance pad area, confirming the spatial resolution supports ~ 1 mm
feature detection, measuring illumination uniformity across the player area, ensuring
time- multiplexing achieves seamless coverage without perceptible flicker, and
confirming the system achieves at least 300 lux equivalent at the player’s distance.

Initial testing will involve capturing images of a printed calibration checkerboard to
measure geometric accuracy, including field of view, distortion, and alignment[8].
Separately, a uniform reflectivity target such as a matte white board will be used to
verify even illumination across the play area. Pixel intensity measurements from these
images will be analyzed to assess both brightness uniformity and overall image quality.
If any issues such as uneven lighting, distortion, or poor focus are identified,
adjustments will be made to the lens focus, LED placement, or camera alignment prior
to full integration.

118

7. Software Design

7.1 Input/Output

The primary method of input for the rhythm game is the custom-built dance pad, which
functions similarly to a keyboard from the perspective of the operating system. During
gameplay, the game continuously polls for input every frame, much like a traditional PC
game responds to keyboard input. Our custom PCB includes a microcontroller (MCU)
responsible for interpreting signals from force sensing resistors (FSRs) embedded in
each panel of the dance pad. These signals are converted into digital keypresses and
transmitted to the host computer over a USB connection. As far as the PC is concerned,
the dance pad appears as a standard USB keyboard, with each directional panel
mapped to a specific keycode.

Table 7.1 Game Arrow Mapping

Game Interpretation Keyboard Keycode Dance Pad Panel
U W U
U E U
0 D 0
U C U
U X U
U Z U
U A U
U Q U
S

The table above shows the different keyboard inputs that are able to be used especially
for those who would like to import the game to a computer and want to use the
computer's built-in keyboard or an external keyboard of their choosing. This allows for
portability for the game itself.

This input abstraction allows for flexibility during development and testing. Although the
dance pad is the intended method of interaction, players could also use a conventional
keyboard to play the game. However, this alternative would lack the physicality and
immersive experience that the dance pad is designed to provide.

119

The game maintains an internal representation of the current input state, tracking which
directional inputs are actively being held and recording the precise timing of each press
event. When a player steps on a panel corresponding to a direction (such as up, down,
left, right, center, or any of the diagonals), the game updates its internal state to reflect
that the direction is currently active. It also records the timestamp or frame number at
which the input was first detected. This information is used for evaluating the accuracy
of the player's timing during gameplay.

When the player lifts their foot and the input is released, the game updates the state to
mark that direction as no longer active. This real-time management of directional states
and associated timing data ensures that the game can accurately judge the player's
inputs against the expected cues defined in the song chart. A diagram of this input and
output flow is shown in Figure 7.1.

I/0 Diagram

Game Starts

Update current state
to direction pressed

l YES —

Game polls for input A Direction
—

per frame Pressed?
'

Is direction still
J) pressed?

e

NO YES
' L |

Figure 7.1 Input/Output Flow Diagram

7.2 State

The concept of state plays a central role in the software's logic. The input state is
composed of several components, with each of the nine directional inputs represented
as individual objects. These objects include a boolean indicating whether the input is
currently held down, and if so, they also store the time or frame at which the press
began. This enables precise tracking of how long a panel has been held and when the
input occurred relative to the rhythm chart.

120

In addition to directional input, the system also tracks the player's current pose using the
output from the computer vision subsystem. The pose state is updated every frame
based on the latest keypoint and gesture analysis results. Each pose is identified by a
label (such as “hands up” or “lean left”) and is associated with a confidence score and
the time at which it was first detected. The pose state behaves similarly to directional
input, allowing the game to evaluate whether the player is performing the correct pose
at a given moment in the song.

The system also maintains a variable that stores the most recently changed input or
pose, useful for debugging, scoring, and triggering visual effects. At the start of each
song, the input state is initialized to a neutral condition, with no active inputs or poses.
As gameplay progresses, the state evolves to reflect the player’s ongoing actions. The
flow of this state update process is illustrated in Figure 7.2, which outlines how the
game responds to input and pose events.

State Diagram

Update State to Save intial time

Start i X . _)
include direction frame

l YES

(Initial state) A Direction Update the Last
0 Directions pressed Pressed? Direction Changed

I NO
J

Figure 7.2 Note State Flow Diagram

7.3 Event Handling

Scoring in the rhythm game is driven by discrete gameplay events that are defined in
the song chart. These events fall into two main categories: directional note events and
pose-based gesture events. When the game encounters one of these events during
playback, it checks the current input state to determine whether the player has correctly
performed the expected action.

Each event is associated with a specific timestamp or frame number. At the moment an
event is triggered, the game compares the expected input or pose to the actual state of
the player, as recorded in the current frame and recent frame history. A timing window is
applied to judge how closely the player’s action aligns with the event.

121

The judgment criteria follow a frame-based window around the expected frame of the

event:

If the input or pose is detected within +3 frames, the judgment is marked as

If detected within £5 frames, it is marked as Great.

If within 8 frames, it is considered Okay.

If the correct input or pose is not detected within 8 frames of the event, it is
scored as a Miss.

This scoring logic is applied consistently to both directional and pose events. However,
additional tolerance may be applied to pose events to account for the inherent variability
of real-time pose detection. Factors such as model inference delay, confidence
thresholds, and temporal smoothing can introduce minor inconsistencies, so the system
may offer a slightly wider scoring window for gestures without compromising the

integrity of the gameplay.

By evaluating input and pose accuracy within tightly defined timing windows, the game
can provide responsive feedback and fair scoring that rewards player precision while
accommodating the occasional noise present in computer vision systems.

Game polls State /'

«— NO YES —3> Get Timing

Event Scoring
Diagram

Does state include
Note/Pose event =3 note direction or
pose

LT A NG

<3 <5 <8 =8
Frames Frames Frames Frames
Score event as Score event as Score event as
“Perfect” “Great” “Good”

Figure 7.3 Event Scoring Flowchart

122

7.4 Pose Handling

Using the OpenCV and Mediapipe software, we first obtain the image sent by the
camera module that will show the person. Afterwards our machine learning model
activates that is what allows the person to be mapped using a series of dots as seen in
Figure 3.10. We will then retrieve the series of dots location and with this information we
can determine if a certain pose is being performed. If a certain pose is being performed
and recognized, then the state will be updated to reflect that. However, if a pose is not
being performed the state will be updated to show that there is no pose that is being
performed.

Using this system there is a possibility due to artificial intelligence, that the state could
be incorrectly updated, however with our system there is a 90% accuracy in correctly
determining the correct state when performing these series of poses at certain portions
of the game’s design.

Pose State
Diagram
Software Initiates
Reci Vid
F:‘:avee flro‘:: Machine Learning Maps the person Retrieve dots
- — Model initiates using dots locations

Camera

U}.:dates state to YES
include pose
distance between
dots match pose
condition
Updates state to

exclude pose

—— NO

Figure 7.4 Pose State Flow Diagram

123

8. System Fabrication

The fabrication of our system hinges on the careful design and implementation of its
custom Printed Circuit Boards (PCB)’s. The system's distributed architecture comprises
three unique designs: a central “Master Controller”, a high-current “Power Hub”, and
nine identical modular “Input Tiles”. Each of which requires a robust and well-considered
PCB layout. A proper layout is not merely about connecting components, but a critical
engineering discipline that ensures signal integrity, power stability, thermal
management, and manufacturability. The following will provide details on the layout
philosophy and specific design choices for each of the three custom PCBs, adhering to
industry standards such as IPC-2221A to translate the schematic designs into reliable,
high-performance hardware.

8.1 PCB Layout Strategy

The core philosophy guiding the layout of all STEPS PCBs is one of partitioning and
isolation. Each board is logically divided into functional blocks, such as power supply,
microcontroller core, high-speed communication, and analog sensing. By physically
grouping the components of each block and carefully managing the routing between
them, we can minimize electromagnetic interference (EMI), prevent noisy digital circuits
from corrupting sensitive analog signals, and ensure stable power distribution.

Some key principles applied across all designs include strategic component placement
to minimize trace lengths, especially for high-frequency signals (like crystal oscillators
and USB data lines) and sensitive analog signals. Trace width management calculated
based on the IPC-2221A standard. High-current power lines are made significantly
wider to handle the electrical load without overheating, while non-critical signal lines use
a standard width. A solid ground plane is used on at least one layer of each PCB. This
provides a low impedance return path for all signals, which is crucial for reducing noise,
EMI, and aiding in thermal dissipation. Various decoupling and filtering capacitors are
placed as close as possible to the power pins of every integrated circuit. This provides a
local reservoir of charge to handle sudden current demands and shunts high-frequency
noise to the ground plane before it can propagate through the system.

8.2 Master Control Board Layout

The Master Controller is the central nervous system of the dance pad. Its layout is
optimized for reliable communication with both the host PC via USB and the nine “Input
Tiles” via 12C.

The ATmega32U4 (U1), its 16 MHz crystal oscillator (Y1), and the crystal's loading
capacitors (C1, C2) are placed centrally. The crystal is positioned immediately adjacent
to the MCU’s XTAL pins. This is the most critical placement on the board, as long traces

124

to the crystal can act as antennas, introducing noise and causing clock instability, which
would lead to catastrophic USB communication failure.

All components related to the USB connection are grouped together at the edge of the
board for direct external access. The USB-C connector (J2), ESD protection diodes (D2,
D3), and the 5.1kQ configuration resistors (R2, R3) are tightly clustered. The differential
data lines (D+ and D-) are routed as a pair with matched lengths and minimal distance
to maintain their characteristic impedance and protect them from noise. The 500mA
polyfuse (F1) is placed directly after the VBUS pin of the connector to protect the host
PC’s USB port from overcurrent events.

Power enters from the Power Hub via connector J7. To ensure the MCU's sensitive
analog-to-digital converter (ADC) receives clean power, the AVCC pin is isolated from
the main 5V rail by an LC filter network (ferrite bead L1 and capacitor C3). A series of
100nF ceramic decoupling capacitors are placed next to every VCC and AVCC pin on
the microcontroller, providing essential high-frequency noise filtering.

The 4-pin connector (J3) that serves as the master output for the 12C bus is positioned
to allow for a clean run of traces from the MCU's hardware SDA (PD1) and SCL (PDO)
pins. This minimizes the length of the bus on the master board before it is sent out to
the daisy-chained tiles.

8.3 Power Hub Board Layout

The Power Hub board manages a mixed-power environment, handling both a
high-current 12V circuit for the IR LEDs and a low-current, regulated 5V supply for the
system's logic. The primary layout consideration is the strict isolation of the high-power
switching circuits from the sensitive 5V logic circuits.

The board is physically partitioned. Components for the 12V IR LED driver are on one
side, and components for the 5V buck regulator are on the other. This prevents the high
frequency switching noise from the LED driver from coupling into the clean 5V rail.

5V Switching Regulator (LM2576): All components associated with the buck regulator
(U2, inductor L1, Schottky diode D1, and input/output capacitors C2/C3) are grouped
tightly together, following the layout recommendations in the component's datasheet.
Keeping the switching loop (from U2, through L1 and C3, and back to U2's ground) as
small as possible is critical for efficiency and minimizing radiated EMI. The 5V output
and 12V input traces are made very wide to handle the current without a significant
voltage drop.

Constant-Current LED Driver (MP24894): The circuit for the LED driver is also a
high-frequency switching regulator. The IC (U1), the main switching MOSFET (Q1), the
sense resistor, and the flyback diode are all placed very close to one another. This
minimizes the area of the high-current switching loop, which is essential for reducing

125

EMI. Large copper pours are used for the 12V and GND connections to the MOSFET to
act as a heatsink, helping to dissipate the heat generated during high-current operation.

Grounding: A carefully designed ground plane is used. While a single ground plane is
used for simplicity, the layout ensures that the return path for the noisy LED driver
current does not flow underneath the sensitive 5V regulator circuitry. This is a form of
"virtual" partitioning that maintains ground integrity while preventing noise coupling.

8.4 Input Tile(s) Layout

The nine “Input Tile” boards are the sensory and feedback nodes of the system. As they
are identical and modular, their layout is optimized for easy assembly, reliable operation,
and simple daisy-chaining.

The ATtiny85 microcontroller (U4) is placed centrally, with its 100nF decoupling
capacitor (C15) located directly adjacent to its VCC and GND pins. The connectors for
the Force-Sensing Resistors (J7, J8) and their corresponding voltage divider resistors
(R7, R9) are placed close to the MCU's ADC input pins (PB3, PB4). This keeps the
analog traces short, making them less susceptible to picking up digital noise from other
parts of the board, which could lead to inaccurate pressure readings.

The nine addressable RGB LEDs (D7-D15) are laid out in a 3x3 grid that physically
corresponds to their intended placement within the dance pad tile. The data line is
routed sequentially from the MCU to the first LED's Data-In pin, and then from each
LED's Data-Out to the next one's Data-In. The power traces feeding the LEDs are made
sufficiently wide to handle the cumulative current draw of all nine LEDs when they are at
full brightness.

The "Bus IN" (J9) and "Bus OUT" (J11) connectors are placed on opposite edges of the
board. The VCC, GND, SDA, and SCL traces run directly across the board between
these two connectors. This layout makes it mechanically simple to connect the tiles to
one another in a chain using short, standardized cables, greatly simplifying the final
assembly of the dance pad.

9. System Testing and Evaluation

9.1 Prototype Construction

Our prototype dance pad tile is constructed using a layered approach to ensure
durability and functionality. The foundation is a solid piece of plywood, which serves as
a rigid and stable base for all other components. On the underside of this base, small
wooden blocks act as feet to elevate the tile and provide stability on the floor. A raised
inner frame, made from cut pieces of acrylic, is built on top of the plywood base. This
frame defines the active area of the tile. The Force-Sensitive Resistors are placed

126

inside the area defined by this frame, with two FSRs laid horizontally in the images.
Circular cutouts in the base layer are intended for routing the sensor wires cleanly out of
the tile assembly. The top surface that the player steps on is a thick sheet of clear
acrylic. This transparent top rests directly on the raised wooden frame. When a player
steps on the tile, their force is transferred through the top sheet into the sturdy frame,
which protects the sensors below from being crushed. The top sheet only needs to flex
a minimal amount to activate the FSRs.

Figure 9.1 Top view: 10x10 inches central acrylic tile, 12x12 inch w/ border, secured on
wood base w/ standoff blocks

Figure 9.2 Top view w/ 10x10 inch central tile removed showing electrical routing holes

127

Figure 9.3 Bottom view: standoff blocks to allow for easy cable routing

For this prototype phase, the electronics are not on a custom PCB. Instead, the wires
from the FSRs will be connected to a solder-less breadboard, which will then be
connected to the Arduino Mega. To test the functionality of this prototype, we first built
the voltage divider circuit on a solder-less breadboard by connecting a 10kQ resistor
between the 5V rail and a separate row. The two wires from one of the FSRs inside the
prototype tile are then connected, with one wire going to the ground rail of the
breadboard and the other connecting to the same row as the resistor. Next, we
connected the breadboard to the Arduino Mega by running wires from the breadboard's
5V and ground rails to the corresponding 5V and ground pins on the Arduino. A signal
wire is then run from the row where the FSR and resistor meet to the analog input pin
A0 on the Arduino Mega.

Figure 9.4 Top View: w/ Force Sensitive Resistors (FSR) placed under acrylic tile

128

9.2 Hardware and Software Testing

After the physical connections were made, we connected via USB to the Arduino Mega
and created a simple test program. This sketch was written to continuously read the
analog value from the analog input pin AO and print that value to the serial monitor. With
the serial monitor open we observed the baseline readings with no pressure applied.
Then, we proceeded to press on different areas of the tile with our hands and feet to
observe how the values change. This process was used to help determine the best
orientation for the FSRs to achieve maximum input coverage and gather the data
needed to define a reliable software threshold for detecting a step.

9.3 Performance Evaluation

9.3.1 Hardware

For the FSR-based input panels, we experimented with multiple configurations to
determine the most responsive and consistent placement strategy. Initial testing
compared diagonal placements, single-sensor configurations, a two-FSR cross
arrangement, 4 FSRs around the perimeter of each panel, pairs of FSRs more towards
the center where the player would be, and pair of FSRs on opposite ends. Ultimately,
we found that positioning two FSRs on opposite ends underneath each step panel
provides the most reliable activation and minimizes the chances of unregistered steps
due to uneven foot pressure. This FSR layout is shown in Figure 9.5. However, this
configuration will require additional stress testing during SD2 to evaluate long-term
reliability and edge responsiveness under repeated dynamic loads. We are also
considering incorporating the 4 FSRs around the perimeter much like how StepManiaX
is designed.

Figure 9.5 Pairs of FSRs on opposite ends chosen integration layout

129

On the microcontroller side, current integration has focused on establishing a functional
prototype using an Arduino Leonardo on a breadboard. So far, we have demonstrated
input registration from a single direction using one FSR. This integration is shown
below. This served as a proof-of-concept to validate both the sensor circuit and the USB
HID signal pathway. Although the system supports nine directional inputs in total, we
have deferred full-scale integration until we finalize our PCB design. Once one direction
proves stable, the same circuit can be scaled and replicated for the remaining eight
inputs.

Figure 9.6 Mini demo video pad with breadboard and single FSR integration

In SD2, we plan to move away from breadboard prototyping toward soldered perf
boards and eventually a custom PCB that will handle sensor conditioning, signal
routing, and USB HID communication in a more compact and robust layout. We will also
need to incorporate voltage regulation, ESD protection, and possibly signal smoothing
to minimize noise and false triggering. These design considerations will be tested
incrementally as we migrate from a one-sensor testbed to a fully wired 9-direction pad.
Additional hardware reliability metrics such as actuation force, response time, and
thermal consistency will be evaluated once all inputs are functional.

130

9.3.2 Software

After creating the input mapping and after the creation of the game, our first step was to
conduct a unit test of having at least one arrow to light up on the screen when a certain
keycode is pressed. At first the arrow would not light up but after some testing we have
the arrow to light up without fail when pressing the button if there is a signal being read.

The next step was to test the arrow detection system and calibrate it correctly for the
players timing. We had multiple trial and error of what threshold values to have for each
of the different scores between “Perfect’, “Good”, “Bad”, “Miss”. Once we had a
comfortable threshold, we set it and tested the game as a whole to make sure that it
worked for any and all arrows that would appear.

In terms of the computer vision aspect we first had a computer vision model that is able
to, using a variety of points, detect what type of pose is being shown on the camera.
This is due to using the MediaPipe computer vision model implemented in conjunction
with the camera. We then manipulated the model to our liking through a series of test
cases so that it is able to detect poses for example such as head scratching. The poses
we will implement are: “What?”, “Muscle Man”, “Point Up Pose”, “Samurai Pose”,
“Mantis Pose”, and “Tough Guy”.

9.4 Optoelectronics Feasibility Study and Testing

The primary aim of the S.T.E.P.S system is to function efficiently as a rhythm game
playable in both home and arcade environments, with a cost and power-efficient
architecture. A critical aspect of this is the optical and illumination subsystems. When
designing the lens, it was determined that sourcing an off-the-shelf aspherical M12 lens
was the most practical and cost-efficient strategy, rather than developing a
custom-manufactured optic. A custom aspherical lens would have been expensive and
time-consuming to prototype, while commercial M12 aspherical options still met the
project’s required field/depth of view, resolution, and IR transmission for MediaPipe
performance.

Cost efficiency also drove the camera selection. Initially, higher priced Arducam
modules were considered, but research found the SVPRO AR0234-based global shutter
camera to provide comparable performance for a lower price. This module supports
M12 lenses, has no IR-cut filter, and maintains the necessary 3um pixel pitch and 60
FPS frame rate for reliable gameplay tracking.

For the illumination system, a key design consideration was ensuring consistent player
coverage while avoiding excessive instantaneous current demands. Arcade
environments can have variable or dim ambient lighting, making active illumination
important for tracking. Initially, larger LED panels inspired by other rhythm games (like
Dance Around) were explored. However, powering all zones simultaneously would have

131

increased the peak current demands to around 69W,which would place higher demands
on the power supply and wiring. By instead lighting only one zone at a time, the peak
current was reduced to around 18W, supporting simpler and more efficient system
integration.

Additional layout options were explored, including ring lights, edge-mounted LED bars,
and corner-mounted strips. These were evaluated for feasibility, wiring complexity, and
potential glare or reflections. Ultimately, monitor-mounted LED arrays offered the best
compromise of player coverage, mechanical simplicity, and consistent geometry relative
to the camera, while supporting portability.

9.4.1 Design Requirements and Specifications

The optical and illumination subsystems must work together to ensure accurate,
consistent pose tracking under diverse conditions. For the optical design, the target was
to achieve at least 3 pixels per millimeter resolution, a frame rate of 60 FPS minimum,
and a horizontal field of view near 77-93 degrees to reliably capture the entire 2.9 m x
2.9 m tracking area surrounding the dance pad from a 1.83 m distance. The lens was
expected to maintain minimal geometric distortion, with sufficient sharpness to resolve
~1mm limb features. For the illumination system, the design aimed for at least 85%
brightness uniformity, 850 nm near-IR wavelength for user comfort, and an equivalent
brightness of 300 Ilux at the player distance, while managing power with a
time-multiplexed scheme to limit peak current draw. These requirements guided
component selection, mechanical layout, and optical design.

9.4.2 Optical System Design

The purpose of the vision subsystem is to capture spatially accurate, high-contrast
images of the player’'s movements during gameplay, supplying reliable data to the
MediaPipe pose estimation framework for style-based scoring. The optical design is
critical for minimizing ambiguity in landmark detection, reducing the computational
burden on the pose estimation model, and improving real-time responsiveness.

The optical system targets a minimum of 3 pixels per millimeter to resolve features
approximately 1 mm in size on the dance pad. With a pixel pitch of 3.0um, the required
image-space resolution is:

3 x 3um =9.0 ym

The system magnification M is then:
__ Imagesize __ 9.0pm 9.0 — 0.009

" objectsize ~ 1mm 1000
The focal length was calculated using an equation that has the horizontal field of view

in mind:

132

a*w, 1830*5.67
f == = 20
Where:
f is the focal length
d is the camera to target distance
w_ is the width of the 1/ 2.6” image sensor

~ 3.63mm

W is the required horizontal scene width

Considering the distance from the sensor and the dance pad, the depth of field is a very
important factor when choosing the right lens. Multiple steps were taken to get this
value. The calculated focal length was used to determine the depth of field.

Hyperfocal distance H:

_ f2 _ (363 _

H = 25—+ f =5+ 3.63 = 1321.32mm
Where:
f = focal length
N = aperture
¢ = circle of confusion for a 1/ 2.6” sensor
Near Limit:

1321.32*1830 _

b = 1321.324(1830—4) 768.19mm
Far Limit:

D = 1321.32*1830 —— 4787.68 mm (o)

f 1321.32—(1830-3.63)
Through these calculations the depth of field was determined to be 856mm — «

This confirms a wide-angle lens with a focal length closer to 4 mm is needed, consistent
with the prototype lens choice (CIL042). That lens, with a diagonal FOV near 97°
(translating to roughly 88° horizontal on the AR0234 sensor), ensures the system can
fully view the dance pad area without demanding excessive installation height or
extreme tilt angles.

Despite this favorable depth of field, the limited vertical coverage poses a practical
constraint. A wider angle lens, such as a 3.2 or 2.8mm focal length, may provide a
better balance between full scene coverage and sufficient image resolution for reliable
Al tracking. These lenses offer increased vertical field of view, ensuring the player
remains fully visible anywhere on the pad while maintaining sufficient detail for pose
estimation. The same DOF calculations were done with the 3.2 mm focal length as well.

H= L1 f=-80—132=89363mm
Where:
f = focal length
N = aperture

133

¢ = circle of confusion for a 1/2.6” sensor

Near Limit:
_ __89363*1830
D = 5s363+830-32) ~002mm
Far Limit:
D, =220 = 1752.46 mm ()

f 893.63—(1830-3.2)

The selected 3.2 mm M12 aspherical lens was determined to be optimal for the
S.T.E.P.S system’s vision needs. The primary requirement was to achieve a wide
horizontal field of view (~87°) to cover a 2.9 m x 2.9 m player tracking area from a
camera placed 1.8 m away. Depth of field calculations showed that, with an aperture of
/2.3 and a circle of confusion of 0.005 mm(typical for a 1/2.6” sensor), the hyperfocal
distance is approximately 893 mm. This means that any subject located 0.6 m or farther
from the camera remains in acceptable focus, perfectly encompassing the full player’s
body in the play zone. Because of this extremely large DOF, no autofocus is required,
and fixed- focus imaging is sufficient for accurate pose tracking using MediaPipe. The
3.2 mm lens also provides acceptable pixel density for Al-based landmark detection and
maintains real-time imaging performance at 60 FPS when paired with the global shutter
ARO0234 camera. Therefore, this lens was selected for its excellent balance of field
coverage, focus stability, and cost efficiency.

The chosen lens (CIL034-F2.3- M12ANIR) was evaluated against the project’s optical
requirements. Table 9.1 summarizes how it meets the key constraints related to the field
of view, resolution, DOF, and Al tracking support.

Table 9.1 Lens Selection Justification

Lens Spec Requirement 3.2 mm M12 Lens Performance | Meets Requirement
Horizontal Field of View ~ 87 ° at 1.8 m distance Yes
(FOV)
Depth of Field (DOF) ~ 0.6 m to « (fixed focus) Yes
Pixel resolution ~2.5- 3 px/ mm over 2.9 m FOV | Yes
Frame Rate Compatibility |60 FPS @ 1080p with global Yes
shutter
Al Tracking Performance Clear full-body pose detection Yes
across tracking zone

134

Aberration/ distortion Minor edge distortion, Mostly
Control acceptable for vision-based

tracking
Cost and availability ~ $40 Yes

Table 9.2 Depth of Field Calculation for 3.2 mm /2.3 lens at 1830 mm subject
distance.

Parameter Value Units
Focal Length 3.2 mm
Aperture 2.3 —
Circle of Confusion 0.005 mm
Subject Distance 1830 mm
Hyperfocal Distance 893.63 mm
Near Focus Limit 601.14 mm
Far Focus Limit 00 mm
Effective DOF 0.6 mto meters

The calculations in table 9.2 confirm that the fixed-focus lens design is sufficient for
full-body imaging at the target distance, eliminating the need for autofocus and ensuring
reliable MediaPipe performance.

9.4.3 lllumination System design

The optical system’s effectiveness in detecting pose landmarks is significantly
influenced by the quality and consistency of scene illumination. To ensure accurate and
robust tracking performance in a variety of ambient lighting conditions, the S.T.E.P.S
system employs a custom-designed near-infrared(NIR) LED illumination array operating
at 850 nm. This wavelength was chosen because it is largely invisible to the human eye,
minimizing player distraction, while maintaining high sensitivity on the AR0234 global
shutter RGB camera used in the vision subsystem.

The illumination system consists of four time-multiplexed IR LED zones, positioned

along the top, bottom, left, and right edges of the display frame. Each zone is
independently controlled and provides directional illumination across the play area. This

135

setup enables zone-based pose segmentation by sequentially lighting one direction at a
time in sync with the camera capture, without requiring a separate LED per pad tile.

These zones are time-multiplexed using a custom microcontroller driver circuit to avoid
interference between overlapping beams. Each zone activates sequentially at a high
enough frequency(60-90Hz) ensuring the player remains well-lit from multiple directions
while minimizing flicker and thermal buildup. This time multiplexed design avoids
overexposure from simultaneous LED output, improves lighting uniformity, and
enhances MediaPipe’s ability to consistently track pose landmarks across the entire
play area.

Each LED zone is mounted around the perimeter of the game area, positioned to
illuminate the player from multiple angles. While final mounting angles are still being
refined, the design assumes slight inward tilts to maximize coverage uniformity. While
the total LED power draw is moderate, concentrated NIR output can still result in
localized heating. To mitigate any user discomfort, such as excessive sweating due to
proximity to strong IR emitters, the system spreads its output over time and space.
Power measurements and eye safety limits are being reviewed against IEC 62471
photobiological safety standards. Preliminary analysis indicates the system remains well
below Class 1 limits, but formal verification will be completed in SD2 through irradiance
measurements and angular spread modeling.

9.4.4 Optical lllumination System Testing and Verification

The optical and illumination system will be carefully tested to ensure they meet these
engineering requirements before integration into the full S.T.E.P.S cabinet. Testing will
focus on verifying that the field of view fully covers the 2.9 m x 2.9 m tracking area
surrounding the dance pad, confirming spatial resolution supports ~ 1mm feature
detection, measuring illumination uniformity across the player’s body, ensuring
time-multiplexed zones maintain seamless perceived lighting without flicker, and
verifying that a minimum of 300 lux equivalent illumination is achieved at a player
distance of 1.83 m.

Geometric and image quality verification will be carried out using a printed calibration
checkerboard pattern to check the camera’s coverage, measure geometric distortion,
and confirm the intended horizontal field of view. Separately, a uniform reflectivity target
will be used to verify even illumination across the dance pad area. Pixel intensity
measurements will then be analyzed frame-by-frame to confirm both brightness
uniformity and signal-to-noise performance, ensuring no major shadows or hotspots
occur during typical player movements. These tests will be performed on individual
components during senior design |, then the integrated system for senior design Il.

9.4.5 Qualitative Distortion Assessment

To evaluate optical distortion introduced by each lens, checkerboard calibration targets
were imaged at the standard system mounting height (~63 inches) using the 3.2 mm,

136

2.8 mm, and 4.2 mm lenses. While all three lenses produced sharp central focus under
proper lighting, noticeable differences in geometric fidelity were observed.

The 2.8 mm lens, with its 120° horizontal field of view, exhibited significant barrel
distortion, particularly near the image periphery. Straight lines on the checkerboard
became visibly curved, and square tiles appeared stretched at the corners. This level of
distortion is known to interfere with Al-based pose estimation, especially in landmark
tracking for limbs and extremities near the edge of the frame.

By comparison, the 3.2 mm lens showed milder distortion, though some barrel warping
was still evident. A checkerboard test image captured with this lens demonstrated
minor stretching of squares near the frame edges, but central geometry remained
well-preserved. This suggests that while the 3.2 mm lens is not perfectly rectilinear, its
distortion is within acceptable limits for MediaPipe’s pose estimation pipeline and does
not require software-based undistortion for prototype use.

The 4.2 mm lens offered the least distortion, but its narrower field of view risked cutting
off portions of the dance pad. As such, the 3.2 mm lens was selected as an optimal
balance between geometric fidelity and scene coverage. If future development requires
full-scene imaging with wider-angle lenses, OpenCV-based undistortion tools may be
explored for real-time rectification.

9.4.6 IR Sensitivity Verification

To validate that the chosen camera (AR0234 NolR configuration) could detect infrared
(IR) light from the 850 nm LED illumination system, a simple IR sensitivity test was
performed. A known IR-emitting source (a standard television remote and active LED
strip segment) was placed in close proximity to the lens under typical room lighting.
When observed through the camera’s live feed, both sources appeared visibly
illuminated on the image sensor confirming that 850 nm wavelengths were reaching the
sensor and not being blocked by an internal IR-cut filter.

This observation confirms the optical subsystem's compatibility with the NIR illumination
zones. Final irradiance and synchronization validation will be performed in SD2, but the
preliminary results affirm that the system can reliably image in the near-IR spectrum and
support pose tracking under IR-only conditions.

9.5 Overall Integration

9.5.1 Hardware

The hardware integration of the STEPS system focuses on the seamless coordination
between the Pad PCB, FSR input mechanisms, RGB LED feedback, display, and power
delivery. The Pad PCB serves as the central hub for all peripheral connections, routing
input signals from the FSR sensors and output signals to the RGB LED strips
embedded in the pad. The camera module and its custom lens are mounted in
alignment with the display, while the LED strip around the display receives simple on/off

137

signals from the MCU through the LED PCB. A central 12V, 5A SMPS provides the
primary power supply, safely distributing energy to both high-current loads like the LED
strips and low-power components like the microcontroller. By centralizing both control
and power at the Pad PCB, the overall design ensures minimal latency, reliable sensor
reading, and predictable system performance under continuous use.

9.5.2 Optical and lllumination Systems

The optical and illumination systems will be integrated with the broader S.T.E.P.S
architecture through synchronized control managed by the system microcontroller. The
existing time-multiplexed illumination strategy, previously described, will be coordinated
with camera exposure to maintain uniform, flicker-free NIR lighting. Mechanically, the
camera module and LED arrays will be mounted to the monitor structure to ensure
consistent geometry and coverage across all play environments. This integration
supports real-time pose estimation with minimal latency, allowing seamless interaction
between hardware and gameplay logic.

9.5.3 Software

After ultimately deciding on using the MediaPipe interaction of computer vision, the
camera will be able to send video footage to the computer which will then be interpreted
by the computer vision model for pose detection. What will happen behind the scenes is
that by using the camera that is pointed towards the player playing, the camera will
capture live video footage of the person to which afterwards will be sent to the computer
that will be running the MediaPipe computer vision model that we use for pose
detection. How the computer vision model works is that by having a series of points or
landmarks being applied to the person though the computer vision model itself, then
using some code, those points or landmarks will then be interpreted as poses
depending on the threshold set.

Afterwards, inside the game itself we will have a game implementation of the pose
recognition system by having indicators on screen that tell players when to perform the
certain pose that appears. Depending on the timing of the pose being performed, then
an accuracy score between “Perfect”, “Great”, “Good” or a “Miss”.

For the game integration itself, we will be using Godot and we will also be using Git for
our version control. While creating the game we created a series of nodes and sprites
that will start from the bottom of the screen and work their way up in a scrolling motion.

As these notes are scrolling upwards, there is a detection system for deciding the timing
that players who play the game decide the score to give them depending on the timing
threshold. Whether that be “Perfect”’, “Great”, “Good” or a “Miss”.

Furthermore, we added a system that allows for the creation of songs. By having the
inputs being pressed, the code will allow the user to add the arrow at that specific

138

timing. Although this system is not fully implemented yet with the Ul, we plan on doing
so during SD2 but we do however have the script done for it.

Overall our future plans for SD2 will be more focused on the implementation of song
creation as well as the creation of a better main menu than we have now.

9.6 Plan for SD2
9.6.1 Hardware

Weeks 1-3

Hardware development will begin with the fabrication and bring-up of the main Pad
PCB. During week 1, we plan to finalize and submit the PCB order to manufacturers
such as JLCPCB, allowing time for fabrication and shipping. Once received, the focus
will be on assembling the board and verifying basic electrical functionality. Key bring-up
tasks include checking voltage regulation, USB HID enumeration, and sensor input
signal integrity.

By week 3, if any issues arise with the initial PCB revision, we will allocate time to make
necessary corrections and resubmit an updated board. In parallel, we will begin early
mechanical work, including cutting sensor foam, aligning top acrylic panels, and
preparing mounting layers for the FSR sensors.

Weeks 4-6

Once the PCB is validated, we will shift focus to full integration of the FSR sensors and
the RGB LED feedback system. Directional pad inputs will be tested end-to-end,
verifying whether foot pressure on panels consistently triggers USB inputs on the PC.
Around week 5, we will begin wiring and securing the LED system, ensuring zoned
control between center pad LEDs and the outer illumination strips.

Power delivery will also be validated during this phase. We will monitor thermal
behavior, voltage stability, and current draw under load to ensure safe and consistent
operation of the system when all lights and sensors are active.

Weeks 7-10

These weeks will be focused on system-wide integration between the input system,
LED feedback, and game software. The RGB LED zones will be programmed to reflect
gameplay events (e.g., scoring feedback, pose prompts), and stress tests will be
conducted to measure timing accuracy, communication reliability, and input
responsiveness during gameplay.

139

Cable routing, connector strain relief, and physical durability checks will also be
performed to verify that the full system can withstand repeated foot strikes and
extended play sessions without mechanical failure.

Weeks 11-12

Final hardware debugging, mechanical reinforcement, and gameplay validation will be
conducted during this period. Key deliverables include ensuring all FSR panels are
mechanically aligned and electrically reliable, verifying that LED feedback occurs in
sync with in-game events, and confirming that the power system remains stable across
sessions. Additionally, we will run full-system QA tests to check for loose components,
exposed wiring, and proper enclosure sealing.

9.6.2 Optical and lllumination Subsystems

Weeks 1-3

The first three weeks will focus on camera setup and initial calibration. The camera will
be physically mounted above the 2.9 m x 2.9 m play area at approximately 1.8 m
height. Mount alignment, angle tuning, and mechanical fastening will be completed to
ensure stable and complete field-of-view coverage.

Following installation, field-of-view calibration using printed checkerboard targets will be
conducted. This step will validate spatial resolution and ensure that the camera meets
the ~1 mm feature detection accuracy needed for effective pose estimation using
MediaPipe.

Weeks 4-5

Once the camera is calibrated, we will install and configure the 850 nm IR LED
illumination zones. These zones will be arranged to provide even coverage of the entire
play area, based on CAD-modeled light cone distributions. Physical alignment and
beam spread will be verified against these models, and power measurements will be
taken to confirm irradiance levels remain within safety thresholds.

After installation, we will test for interference between IR illumination and pose
estimation accuracy under various ambient lighting conditions. If necessary, brightness
and duty cycles will be adjusted using zoned control and time-multiplexing strategies.

Weeks 6-8

Integration with the software pipeline begins in this phase. Real-time video from the
camera will be processed using MediaPipe, and body keypoints will be passed to the
gameplay logic for triggering pose-based events. We will validate synchronization
between pose inputs and the game system, as well as evaluate any camera lag or
frame drops.

140

Metrics such as zone irradiance uniformity, tracking consistency, and image clarity will
be quantitatively evaluated using calibration tools and comparison charts.

Weeks 9-12

Final adjustments, validation, and debugging will be performed. This includes checking
for optical distortions, verifying photobiological safety of the IR LEDs, and stress testing
MediaPipe under rapid player movement. Any remaining issues related to tracking loss,
misclassification, or latency will be resolved before the system is declared ready for
demonstration and integration with gameplay scoring logic.

9.6.3 Gameplay system
Week 1-3

During SD2 with respect to the game integration aspect, the first three weeks will
consist of improving the game integration on the coding side. We will be working on
improving the arrow key integration, improving on adding a series of arrows that will
appear from the bottom of the screen and move their way up, as well as improving
system in the game that is able to detect the arrows that need to be clicked and if they
are clicked depending on the timing they will receive a certain amount of points.

In terms of arrow integration, we will be working on where the various arrows will be
placed on the screen, making the arrows prominent and large enough for the users to
be able to see them without having difficulty as to determining what arrow they need to
be pressing while playing the game.

In terms of the series of arrows appearing from the bottom of the screen and making
their way up, we have plans using various trial and error methods to be able to complete
this task. At the end of the trial and error process the goal is to finalize the
implementation of the detection arrow key system.

Weeks 4-6

Weeks four through six will consist of having a completed and finalized arrow key
integration, after some trial and error have a plan of integrating both the series of arrows
and the arrow detection system.

We will accomplish this by having just a few arrows first as a test run and work on the
detection system until it is able to pass the test case. Once the detection system is able
to pass the unit test, the next step will be to complete the series of arrows scrolling
across the screen.

141

Weeks 7-10

In the following weeks seven through ten, we will be focusing on implementing all of the
pose events into the game. There are a total of 6 different poses that we plan on
implementing for the pose detection system. Those poses include: “What?”, “Muscle
Man”, “Point Up Pose”, “Samurai Pose”, “Mantis Pose”, and “Tough Guy”.

The goal is to have the poses show up on screen when the event happens using an
event handler mechanism implementation. Furthermore have an accuracy
implementation sequence that depending on the timing of performing the pose adds the
points scored to the players total score towards the end of the song being played.

Weeks 11-12

These weeks we will be doing extensive testing on all 6 of the different poses on how
accurate they are as well as activation during gameplay. Furthermore, we will be doing
more testing with the arrows and the pose events.

How we will accomplish this, is by doing a series of unit tests making sure that each
action is able to pass a test that we assign it. Then after it has passed one, we test for
edge cases so that they are accounted for.

Week 13

In this week, we will be focusing on making full charts with different difficulties, with each
song having different difficulties and charts for each difficulty.

Like in our software diagram, Figure 2.8, we will work on creating a menu that will allow
the player to be able to choose a difficulty for songs. The different difficulties that will be
included in the menu will be easy, medium, or hard. The different difficulties will change
the game based on the amount of arrows being created. Easy will have a small number
of arrows appear at any given time, medium will have a moderate increase to the
number of arrows, and hard will have the most increase compared to easy.

Weeks 14-16
In the final weeks we will be asking different people whether that be our advisors,
friends and family, and even test the game on our own for play testing and quality

assurance testing. After this, depending on the feedback received, we can change and
modify as need be.

142

10. Administrative Content
10.1 Budget

We are aiming to limit the budget of this project to $500. Table 710.2 as shown below
lists the bill of materials. Although we want to minimize costs, we also want to ensure
we have materials that have a good enough quality so that they are reliable and
efficient. This includes the framework (hard materials), PCB, RGB LEDs, LED ring,
camera module, and force-sensing resistors. If any of these were bought very cheap
without taking into account better affordable options, we would face consequences.

10.2 Bill of Materials

Table 10.1 Overall Project Itemized Bill of Materials

Item Dimensions Estimated | Quantity | Estimated
Unit Cost Total Cost
SVP AR0234 Sensor 38mm x 38mm $65.99 1 $65.99
Commonlands CIL034 lens | 20mm x 14mm $47.00 1 $47.00
SMD3528 Near Infrared | 5m x 0.01m $45.99 1 $45.99
LEDs
PCB undetermined $45.85 1 $45.85
Force-Sensing Resistors 12.7mm x 57mm | $5 36 $90
Plywood 36 " x38x% " |$50 1 $50
Aluminum Square tubing 38" x38"x1/8" | $10 6 $60
Polycarbonate Sheets 11.75 “x 11.75" [$0 9 $0(already
x0.25" have)
Non-Slip Rubber Mat 2ft x 4ft x 3mm $20 1 $20

143

Table 10.2 Master Controller Board (1 required) ltemized Bill of Materials

Reference Designator | Quantity | Component Estimated Cost
(USD)
U1 1 ATmega32U4RC-AU $4.50
Microcontroller
Y1 1 16 MHz Crystal $0.40
Subtotal $5.90

Table 10.3 Power Hub Board (1 required) Itemized Bill of Materials

Reference Designator | Quantity | Component

Estimated Cost

(USD)
U1 1 MP24894 LED Driver IC $2.00
U2 1 LM2576T-5.0 5V Regulator $1.50
Subtotal $3.50
Table 10.4 Tile Board (9 required) Itemized Bill of Materials
Reference Qty per Total | Component Est. Cost | Total Est.
Designator Board Qty per Unit Cost (USD)
U4 1 9 ATtiny85-20PU $1.80 $16.20
Microcontroller
D6-D14 9 81 APA-106-F5 $0.25 $20.25
Addressable LED
Subtotal $36.45

144

Table 10.5 PCB board total cost evaluation table

Board Estimated Cost (USD)
Master Controller $5.90

Power Hub $3.50

All 9 Tile Boards $36.45

Grand Total (Electronic Components) $45.85

10.3 Distribution of Worktable

Table 10.6 Distribution of responsibilities of each member for this project

Name Major Responsibilities
Software Assistant
Andres Computer | goftware Design and Implementation
Abrams Engineer
Game Design
Name Major Responsibilities
Hardware Lead
Blake Electrical : :
PSUD d Impl tat
Whitaker Engineer esign and fmpiementation
PCB Design
Name Major Responsibilities
Hardware Assistant
Janl.Jon Computer MCU Selection and Implementation
Lumibao Engineer

Embedded Programming

145

Name Major Responsibilities

Project/Software Lead

Website Design and Management
Chrlst_opher Computer Software Design and Implementation
Solanila Engineer

Game Design

Computer Vision Implementation
Name Major Responsibilities

Lens Design and Simulation

Camera Module Integration
Kaila PhOT[OﬂICS Optical and lllumination System Optimization
Peeples Engineer

Image Quality Calibration

[llumination planning and testing

10.4 Project Milestones for SD1 and SD2
10.4.1 Project Milestones for SD1

Table 10.7 Project Milestones SD1

Due Week Advancement

1 Group Creation and have base idea

2 Researching and Innovating based off idea

3 Divide and Conquer Document completed, Have at least 1
committee member

4 Meet for revisions (if any) of Divide and Conquer Document with
committee members, upload revised document into group website

4-5 Individual Research

6 40 pages finished

146

7 Meet for revisions (if any) with committee members

7-8 Testing of components

9 100 pages finished turn in Midterm Report

10 Meet for revisions (if any) with committee members
10-11 Start on video, finishing touches to 120 page document
12 150 page document finished, mini video finalized

10.4.2 Project Milestones for SD2

Table 10.8 Project Milestones for SD2

Target Completion Week

Advancement

2 Camera system & PAD Completion

4 Camera Hardware Completion

5 NIR illumination System Completed

6 Game Completion, Optical Calibration, and Camera detection
7 Pad and Game Integration

8 Camera-to-Game Integration

8 NIR illumination System Integration

12 Full System Testing and Debugging

16 Final Day and Live Demo

147

10.4.3 Development Roadmap

We aim to complete the following specific tasks over the course of SD1 and early SD2.
These objectives are listed in the rough order we plan to execute them, starting from
component acquisition and hardware assembly to software integration and vision-based
features.

1. Acquire all essential components: Order FSR sensors, RGB LEDs, MCU,
USB connectors, power regulators, 850nm LED strips, and a suitable camera
module according to the finalized bill of materials.

2. Design and fabricate the dance pad platform: Construct the pad frame using
durable plywood and aluminum supports. Mount the top transparent acrylic
panels and add non-slip material underneath to ensure player stability.

3. Design a custom PCB schematic: Use KiCad or similar EDA tools to create a
schematic and board layout connecting all pad components. Allocate GPIOs for
sensors and LEDs, and ensure proper voltage regulation and USB connectivity.

4. Order and assemble PCB: Send the PCB design to manufacturers such as
JLCPCB for fabrication. Once received, solder all required components and
headers for interfacing with sensors, LEDs, and the MCU.

5. Write and test microcontroller firmware: Develop firmware capable of reading
analog signals from FSRs and converting them into digital inputs. Implement
USB HID functionality to send these signals as keypress events to the PC.

6. Test PCB + FSR response time: Run debugging scripts to verify that each
sensor input registers with low latency (<10ms), ensuring responsiveness
suitable for rhythm gameplay.

7. Integrate pad input with PC: Confirm successful USB HID functionality by
testing real-time inputs using diagnostic tools or key input test pages on a
computer.

8. Initialize the GitHub repository: Set up a shared repository with version control
for the team. Include directories for firmware, hardware schematics, and game
engine development.

9. Begin a Godot project for the rhythm game engine: Set up a new project in
Godot 4.3 with basic scene structure, a title screen, placeholder assets, and a
framework for spawning notes in sync with music.

10.Map keyboard inputs to note triggers: Bind USB HID inputs to game actions in
Godot. Simulate gameplay using a keyboard before full pad integration to test

148

timing and hitbox accuracy.

11. Design and implement a basic Ul: Build out essential game Ul elements such
as a song selection screen, live scoring display, and feedback for note accuracy
using visual and textual cues.

12.Write a chart parser and loader: Develop functionality to import step charts
from external files (e.g., JSON format) and dynamically spawn notes according to
their timing and track.

13.Connect the pad to the game: Integrate the full dance pad input with the game
logic, ensuring each physical press correctly triggers corresponding note hits and
feedback during gameplay.

14.Integrate camera with Raspberry Pi: Connect the camera to the Raspberry Pi
and confirm live video can be accessed and streamed to the PC via a local
network or direct USB interface.

15.Use a pre-trained pose detection library: Utilize computer vision tools such as
OpenCV, MediaPipe, or OpenPose to extract body key points from the live
camera feed in real time.

16.Detect key poses and gestures: Program the system to recognize predefined
poses like the Muscle Man, What?, Mantis, and Samurai poses based on body
key point configurations.

17.Develop a basic Style Score system: Create a scoring extension that awards
bonus points for expressive poses and movement patterns detected during
gameplay.

18.Build a simple chart editor Ul: Design a chart editing tool that allows users to
import songs, manually place step notes, and export them into a compatible
format for game testing.

19.Design a custom aspherical lens system: Develop a lens assembly capable of
resolving fine motion (~1mm accuracy) across a 40cm field of view when placed
1.8 meters away.

20.Generate accurate ray layouts in Zemax: Simulate optical performance of the
lens system in Zemax to evaluate sharpness, chromatic aberration, and field
distortion.

21.Select a low-cost camera sensor: Choose a cost-effective camera module and

tune its settings to reduce resolution and field of view to <1.5MP, optimizing
frame rate and bandwidth.

149

22.Prototype and test multiple lens configurations: Assemble and test several
lens-camera combinations to confirm alignment and capture quality are
acceptable for pose detection.

23.Design a time-multiplexed LED illumination system with zoned control:
Build a lighting setup that evenly illuminates the player during movement while
avoiding excessive glare or power draw.

24.Quantitatively evaluate optical performance: Use standardized test charts and
calibration tools to assess image clarity, distortion, and pose detection reliability
in the intended environment.

25.Document each milestone: Maintain clear documentation through GitHub
commits, photos, and regular updates, ensuring the project remains transparent
and demo-ready for SD1 and SD2 reviews.

11. Conclusion

The Style Tracking Expressive Pad System (STEPS) project was envisioned as a
modern, expressive, and feature-rich reimagining of the arcade dance pad. Rooted in a
deep appreciation for rhythm-based games and performance-driven technology, STEPS
seeks to push the boundaries of what dance gaming can be, not just in terms of
challenge and skill, but also in terms of artistic expression, immersion, and interaction.
Unlike standard arcade systems that limit players to four or five directional panels,
STEPS introduces nine directional inputs, expanding gameplay into a new physical
dimension that encourages creativity, agility, and style. This redesign opens the door to
both casual users who want to explore dance playfully and competitive users aiming to
master complex movement patterns.

Inspiration for STEPS came from analyzing a wide range of existing arcade machines.
Some machines offer RGB lighting effects. Others offer unique gameplay variations like
double panels or hand sensors. However, there was a lack of unified systems that could
combine style-based expression, advanced lighting, enhanced input granularity, and
computer vision.

With STEPS, we aim to bring all of those technologies together into a cohesive and
upgradable platform. The result is a product that is not just a dance controller, but a
performance stage, an interactive installation, and a learning tool all in one.

The system includes nine FSR-based directional input zones arranged ergonomically to
support full-body footwork. The addition of force-sensitive resistors instead of traditional
microswitch panels provides more precise readings, enabling us to capture not just
when a player steps, but also how hard they step.

150

This opens up new design possibilities for rhythm games that can respond dynamically
to the energy or weight of a dancer's movement. Moreover, each direction includes
paired FSRs, further enhancing accuracy and supporting redundancy or calibration
features down the line.

As the MCU of our system, we use a single Arduino Leonardo microcontroller, chosen
for its native USB HID support and simple integration with PC-based rhythm games.
Unlike serial communication or custom drivers, USB HID allows the STEPS system to
be recognized as a standard input device on most operating systems, which simplifies
the development and testing process. Future upgrades could include Bluetooth LE or
Wi-Fi for wireless play, making setup more flexible and less cluttered.

The STEPS system is powered by a 12V, 5A external enclosed Switch-Mode Power
Supply (SMPS), chosen for its efficiency, safety, and ability to handle the system's
combined high-current and low-current demands. It provides stable power for both the
RGB LED strips and sensitive components like the Arduino Leonardo. Proper filtering
and decoupling built into the custom PCBs ensure noise from the SMPS does not affect
performance, making this a reliable and safe power solution for the dance pad.

The use of RGB LED strips around the dance pad and around the display unit further
boosts immersion. While the LED panels currently support basic on/off functionality for
illuminating the player, their modular design allows us in the future to program it to have
advanced lighting effects and animations. These lighting elements also enhance
computer vision performance by providing backlighting and visual contrast for foot
tracking.

A camera module with a custom-made lens faces the pad and helps track limb
movement, enabling gesture recognition or footwork quality analysis and maximizing the
camera’s accuracy for computer vision, creating a bridge between motion capture and
rhythm-based play.

By separating the input detection and visual feedback functions, the STEPS architecture
maintains modularity and avoids overloading the microcontroller. The Pad’s PCBs focus
solely on reading FSR data and controlling basic LED states, while future improvements
may offload animations to a dedicated LED controller. This separation ensures cleaner
timing and responsiveness, especially in latency-sensitive rhythm games.

From a user experience standpoint, STEPS is designed to feel intuitive and engaging.
New players are given freedom to explore a wider movement space without sacrificing
accuracy, and experienced players can use subtle foot pressures or directional changes
to add flair to their performances. Beyond entertainment, STEPS has educational
potential, whether in dance studios for training foot placement, or in physical therapy
settings for improving balance and movement coordination. Its flexibility makes it a
useful tool for both game designers and movement educators.

Another benefit of STEPS lies in accessibility. By integrating pressure-sensitive input
rather than forceful switches, the pad requires less physical impact, making it more

151

comfortable for a wide range of players. With further refinement, the system could
incorporate audio feedback, accessibility overlays, or adjustable lighting profiles to
support neurodivergent users or players with visual impairments.

Looking forward, there are many directions this system can evolve. For instance, the
addition of haptic feedback (e.g. vibration) could give players tactile response for combo
streaks or rhythm timing.

On the software side, pairing STEPS with Al dance recognition models could lead to
training tools that give real-time tips or scoring based on style rather than accuracy
alone. More advanced LED animations, sound-reactive lighting, or player-generated
choreography libraries could make STEPS a platform for dance-based expression in
gaming, performing arts, or interactive museum installations.

In conclusion, the STEPS dance system is more than just an upgrade, it's a
forward-thinking redesign of what dance input hardware can be. It introduces technical
innovation without forgetting its core purpose: to make dance more expressive, more
interactive, and more fun. Through carefully selected components, modular design, and
a focus on player experience, we believe STEPS lays the groundwork for a new
generation of rhythm-based interfaces. Whether it’'s in the arcade, at a competition, in
the studio, or at home, STEPS has the potential to move not just players, but the entire
dance gaming community, forward.

152

Appendices

Appendix A - references

[1]Guerra-Filho, G. B. (2005). Optical Motion Capture: Theory and Implementation.
Revista de Informatica Tedrica e Aplicada (RITA), 12(2), 1-18.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07147486b65d12c43
26ccb3ad54cab12b52e1ac3

2] Dance around information. RemyWiki. (n.d.).
https://remywiki.com/DANCE_aROUND _Information

[3] Dance around (AC) - bemani games - music game forums. Zlv. (n.d.).
https://zenius-i-vanisher.com/v5.2/thread?threadid=11041&page=2#:~:text=The%20ga

mes%20body%20tracking%20is,games%20that%20cater%20to%20everyone.

[4] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh. OpenPose: Realtime
Multi-Person 2D Pose Estimation using Part Affinity Fields IEEE TPAMI, 2019.
https://doi.org/10.1109/TPAMI.2019.292925

[5] Google MediaPipe. (2024). Pose Estimation. Retrieved from =
https://developers.google.com/mediapipe/solutions/vision/pose

[6] Step Revolution. (2024). StepManiaX. Kyle Ward Retrieved from
https.//stepmaniax.com

[7] Sciotex. (n.d.). Light colors used in machine vision. Retrieved from
https://sciotex.com/light-colors-used-in-machine-vision/

[8] Ultralytics. (2025). A guide to camera calibration for computer vision in 2025.
Retrieved from
https://www.ultralvtics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-20

25#:~:text=0ftentimes%2C %20they%20end%20up%20capturing.for%20real%2Dworld
%20A1%20applications

[9] Flexfire LEDs. (n.d.). Color rendering index (CRI) and LED lighting: What is CRI?
Retrleved from

CRIs%20under%2080%203re%209enera|Iy,one%ZOmeasurement%20for%20llght%
Oquality

[10] MassedCompute. (n.d.). How does the size of an image affect the training time of a
CNN? Retrieved from
https://massedcompute.com/fag-answers/?question=How%20does%20the%20size%20

0f%20an%20image%20affect%20the%20training%20time %200f%20a%20CNN

153

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07147486b65d12c4326ccb3ad54ca612b52e1ac3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07147486b65d12c4326ccb3ad54ca612b52e1ac3
https://zenius-i-vanisher.com/v5.2/thread?threadid=11041&page=2#:~:text=The%20games%20body%20tracking%20is,games%20that%20cater%20to%20everyone
https://zenius-i-vanisher.com/v5.2/thread?threadid=11041&page=2#:~:text=The%20games%20body%20tracking%20is,games%20that%20cater%20to%20everyone
https://developers.google.com/mediapipe/solutions/vision/pose
https://stepmaniax.com
https://sciotex.com/light-colors-used-in-machine-vision/
https://sciotex.com/light-colors-used-in-machine-vision/
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN

[11] Supertek Module. (n.d.). Monochrome camera vs. color: Which is best? Retrieved
from
https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome
%20cameras%20are%200ften%20used,color%20cameras%20are%20better%20suited

[12] Commonlands. (n.d.). Wide angle 3mm M12 lens CIL329. Commonlands.
Retrieved July 10, 2025, from

https://commonlands.com/products/wide-angle-3mm-m12-lens-cil329

[13] International Organization for Standardization. (2010). ISO 9241-210: Ergonomics
of human-system interaction. Retrieved from
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d4 17f9cdab1/ISO

-9241-210-2010.pdf

[14] Smart Vision Lights. (n.d.). IEC/EN 62471 summary: Photobiological safety of
lamps and lamp systems. Retrieved from
https://smartvisionlights.com/wp-content/uploads/I[EC_62471_ summary.pdf

[15] IEC. (2006). IEC 60598-1: Luminaires - Part 1: General requirements and tests.
Retrieved from

https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-St
andard-Free-Download.pdf

[16]] Sobel, I., & Feldman, G. (1968). An Isotropic 3x3 Image Gradient Operator.
Introduced the Sobel operator for edge detection. Retrieved from

https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradien
t_Operator

[17] Canny, J. F. (1986). A Computational Approach to Edge Detection. Proposed the
multi-stage Canny detector with Gaussian, non-max suppression, and hysteresis.
Retrieved from

https://www.researchgate.net/publication/224377985_A_Computational Approach_To_
Edge_Detection

[18] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks (AlexNet) Retrieved from
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-conv
olutional-neural-networks/

[19] Hidalgo, G., et al. (2019). Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields Retrieved from
https://www.ri.cmu.edu/publications/openpose-whole-body-pose-estimation/

[20] Google Research. (2020). BlazePose: On-device, Real-time Body Pose Tracking
Retrieved from

https://research.qgooqgle/blog/on-device-real-time-body-pose-tracking-with-mediapipe-bla

154

https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited
https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited
https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited
https://commonlands.com/products/wide-angle-3mm-m12-lens-cil329
https://commonlands.com/products/wide-angle-3mm-m12-lens-cil329
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO-9241-210-2010.pdf
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO-9241-210-2010.pdf
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO-9241-210-2010.pdf
https://smartvisionlights.com/wp-content/uploads/IEC_62471_summary.pdf
https://smartvisionlights.com/wp-content/uploads/IEC_62471_summary.pdf
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-Standard-Free-Download.pdf
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-Standard-Free-Download.pdf
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-Standard-Free-Download.pdf
https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator
https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator
https://www.researchgate.net/publication/224377985_A_Computational_Approach_To_Edge_Detection
https://www.researchgate.net/publication/224377985_A_Computational_Approach_To_Edge_Detection
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://www.ri.cmu.edu/publications/openpose-whole-body-pose-estimation/?utm_source=chatgpt.com
https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-blazepose/
https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-blazepose/

[21] Google Al. MediaPipe Pose Landmarker lightweight, real-time 33-landmark body
pose detection. Retrieved from
https://ai. le.dev mediapi ' isi landmarker

[22] Canva. (2025). Canva [Web application]. Retrieved from https:/www.canva.com/
[23] OpenAl. (2023). ChatGPT (Feb 13 version) [Large language model].

[24] Microsoft. (2025). copilot [Al assistant]. Microsoft Corporation.

[25] Gemini. (2025, July 6). [Response to a query about rhythm game development]
[26] DeepSeek (2024), [large language model developed by DeepSeek Al].

[27] Unity Technologies. (2025). Unity (6000.0.52f1 LTS) [Computer software].
Retrieved from https.//unity.com/download

[28] Godot Engine. (2025). Godot Engine (4.4.1) [Computer software]. Retrieved from
https.//godotengine.org/

[29] Image Engineering. (2015). Camera tests: White Paper 1.0. Kerpen, Germany:
Image Engineering GmbH & Co. Retrieved from

https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper
1.0.pdf

[30] IPC International, Inc., IPC-2221A: Generic Standard on Printed Board Design,
May 2003.

[31] C. F. Coombs, Printed Circuits Handbook, 6th ed., New York, NY, USA:
McGraw-Hill, 2008.

[32] Sierra Circuits, Inc., "IPC-2221 Standards in PCB Design," [Online]. Available:
https://www.protoexpress.com/blog/ipc-2221-standards-in-pcb-design/.

[33] USB Implementers Forum, Device Class Definition for Human Interface Devices
(HID), Version 1.11, Jun. 27, 2001. [Online]. Available:_https://www.usb.org/hid

[34] USB Implementers Forum, Universal Serial Bus Specification, Revision 2.0, Apr.
27, 2000.

[35] U.S. Code of Federal Regulations, Title 47, Part 15, Radio Frequency Devices,
Federal Communications Commission, 2023. [Online]. Available:
https://www.ecfr.gov/current/title-47/ch r-| h r-A/part-1

[36] Federal Communications Commission, OET Bulletin No. 62: Understanding the

FCC Regulations for Low-Power, Non-Licensed Transmitters, Oct. 1993. [Online].
Available:

155

https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker
https://www.canva.com/
https://unity.com/releases/editor/whats-new/6000.0.52#installs
https://godotengine.org/
https://godotengine.org/
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper_1.0.pdf
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper_1.0.pdf
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper_1.0.pdf
https://www.protoexpress.com/blog/ipc-2221-standards-in-pcb-design/
https://www.usb.org/hid
https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15

https://transition.fcc.gov/Bureaus/Engineering Technology/Documents/bulletins/oet62/o
et62rev.pdf

[37] UL Standards, UL 62368-1: Audio/Video, Information and Communication
Technology Equipment — Part 1: Safety Requirements, Northbrook, IL, USA:
Underwriters Laboratories, 2019. [Online]. Available: https://www.ul.com

[38] UL Standards, Hazard-Based Safety Engineering (HBSE) & UL 62368-1, [Online].
Available:
https://www.ul.com/news/hazard-based-safety-engineering-hbse-and-ul-62368-1

[39] European Commission, Restriction of the Use of Certain Hazardous Substances in
Electrical and Electronic Equipment (RoHS) Directive 2015/863/EU, Brussels, Belgium:
European Union, 2015. [Online]. Available:
https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en

[40] Mouser Electronics, RoHS Guide: Understanding Restriction of Hazardous
Substances Compliance, 2024. [Online]. Available: https://www.mouser.com/rohs/

[41] IPC International, Inc., IPC-A-610H: Acceptability of Electronic Assemblies,
Bannockburn, IL, USA: IPC, 2020.

[42] EMSG, Inc., Understanding IPC-A-610: An Overview of the Electronics Assembly
Standard, 2023. [Online]. Available:
https://www.emsginc.com/blog/understanding-ipc-a-610/

Appendix B - ChatGPT prompts and outcomes

[43] What would be the best way to create a rhythm game for a beginner?
Would using a game engine be best or are there other alternatives to
complete this objective?

ChatGPT said:

Creating a rhythm game as a beginner is totally achievable and a great project to
learn programming, game logic, and audio synchronization. Here's a breakdown
of the best approach:

M Best Way: Use a Game Engine

Using a game engine is strongly recommended for beginners because it handles
many hard parts (rendering, audio, input, timing) so you can focus on the
gameplay.

Top Beginner-Friendly Game Engines:

1. Unity (with C#)

156

https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet62/oet62rev.pdf
https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet62/oet62rev.pdf
https://www.ul.com
https://www.ul.com/news/hazard-based-safety-engineering-hbse-and-ul-62368
https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en
https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en
https://www.mouser.com/rohs/
https://www.emsginc.com/blog/understanding-ipc-a-610/
https://chatgpt.com?q=game%20engine
https://chatgpt.com?q=Unity
https://chatgpt.com?q=C%23

e [74 Strong community, lots of tutorials
e [74 Built-in support for music syncing, 2D and 3D
o [74 Asset Store has ready-made rhythm tools

) Tutorial: "How to make a rhythm game in Unity" (e.g., Brackeys’ or
Code Monkey's guides)

2. Godot (with GDScript or C#)

e [Lightweight, open-source, no royalties
e [74 Very beginner-friendly scripting
e [74 Good 2D support

o Search: “Godot rhythm game tutorial”

3. Scratch (for absolute beginners or younger users)

e [%4 Drag-and-drop programming
o [Great for learning the logic of timing and input

e X Limited in terms of polish and performance

7 What a Rhythm Game Needs

e () Beat Detection or Timing System (e.g., hit notes on the beat)

e ™ Input Sync (e.g., player presses buttons in time)

| Scoring System

EZ Visual Cues (e.g., arrows, circles, or notes moving)

-) Timing Accuracy (Perfect, Good, Miss)

Game engines make all this much easier by providing audio timing APIs and
visual tools.

157

https://chatgpt.com?q=Code%20Monkey
https://chatgpt.com?q=Code%20Monkey
https://chatgpt.com?q=Godot
https://chatgpt.com?q=GDScript
https://chatgpt.com?q=C%23
https://chatgpt.com?q=Scratch

¥ Alternative (but harder) Routes

If you don’t use a game engine, here’s what you’ll face:

1. Custom Code with Pygame (Python)

e (@ Doable, but you'll write your own audio timing, input, collision, etc.

e Good for learning, but not beginner-easy

2. Web-based Rhythm Game

e Use JavaScript + HTML5 Canvas

e Libraries like Tone.js or Howler.js for audio timing

e Not as beginner-friendly unless you’re already into web dev

"4 Recommendation
Start with Godot or Unity:

e Godot is simpler for pure 2D, less setup.

e Unity is more powerful, especially long-term.

Once you’re more experienced, you can explore custom implementations.

To run a 9-directional dance pad that connects to a PC via USB and also
communicates with an LED driver, you’ll need a microcontroller (MCU) that supports:

74 Core Requirements:

. Enough GPIOs:

o Atleast 9 digital inputs for the pad sensors.

158

https://chatgpt.com?q=Pygame
https://chatgpt.com?q=JavaScript
https://chatgpt.com?q=HTML5%20Canvas
https://chatgpt.com?q=Tone.js
https://chatgpt.com?q=Howler.js

o Additional digital outputs (or a serial interface) to control the LED driver.

2. USB Device Capability:

o Native USB HID or CDC support (for PC connection as a game controller
or serial device).

3. LED Driver Communication:

o Either GPIOs (for basic on/off) or a protocol like SPI, 12C, or UART to
communicate with an LED controller.

4. Low Latency:

o For responsive input and visual feedback.

Recommended MCU Options:

@ Teensy 4.0 or 4.1

e Pros:
o Native USB support (appears as joystick, keyboard, or HID).
o Powerful ARM Cortex-M7 @ 600 MHz (overkill but very low latency).
o Tons of GPIOs and hardware serial, SPI, and 12C.
o Great community support.

e Cons:
o Slightly more expensive than basic MCUs.

e Best for: High-performance setups with RGB matrix or advanced lighting.

& STM32F103C8T6 (Blue Pill)
e Pros:

o Native USB support (with STM32duino or libusb).

159

o Multiple GPIOs, SPI/I2C/UART.

o Very affordable.
e Cons:
o Trickier USB HID setup than Teensy.

e Best for: DIY USB devices with moderate learning curve.

@ Arduino Leonardo / Micro

e Pros:
o Native USB HID support (built-in joystick/keyboard emulation).
o Simple to program.
o Enough GPIOs.
e Cons:
o 8-bit AVR (slower than ARM).
o Limited if you want more complex LED animations.

e Best for: Simple, affordable dance pad setups.

@ Raspberry Pi Pico
e Pros:
o RP2040 chip with dual-core.
o USB HID support via CircuitPython or C++ SDK.
o SPI/I2C/UART support.
e Cons:
o Somewhat more setup time to configure USB HID.

e Best for: Balanced performance and cost, open source.

160

LED Driver Options
If using individually addressable LEDs (e.g. WS2812, APA102):

e Use NeoPixel or FastLED libraries.

e These require timing-accurate GPIO (Teensy is great here).

If using a basic LED panel (on/off for each pad):

e Use GPIOs or an 12C/SPI GPIO expander (e.g. MCP23017, 74HC595).

USB HID vs Serial

e If you want it to act like a game controller, use USB HID Joystick profile
(Teensy/Leonardo are ideal).

e If you want it to send messages to a custom PC app, use USB Serial (CDC)
and parse inputs.

*“. Final Recommendation

If you want plug-and-play USB controller functionality, responsive LED control, and
easy development:

{74 Teensy 4.0 or Arduino Leonardo
If you want more power and flexibility (with some DIY setup):

{74 Raspberry Pi Pico or STM32F103 (Blue Pill)

Let me know:

e Do you want analog pressure sensitivity?

161

e What kind of LED panel or effects do you want?

e Should it plug in and work like a controller right away?

That will help narrow it down further.

For arcade-grade and DIY dance pads, the most commonly used and effective panel
sensor types are:

+ 1. Mechanical Switch-Based Sensors (Arcade Standard)

D Best for: Arcade-grade dance pads (like DDR, ITG)

Used in: Original DDR arcade pads (Konami), ITG pads, StepManiaX

How it works: Each panel is mounted over a set of mechanical switches
(typically 4), and stepping on the panel compresses it to trigger the switches.

Pros:
o Extremely durable under heavy use
o High responsiveness and low latency
o Precise actuation point (clear "on" and "off")
Cons:
o Requires fine calibration and tuning
o Panels can wear out or misalign over time if not maintained

Common switch: Omron V-10 or V-15 series

+ 2. Foil Contact Sensors

Best for: DIY dance pads on a budget

e Used in: Cobalt Flux-style DIY pads, older homemade builds

162

e How it works: Aluminum foil or copper tape layers make contact when stepped
on, completing a circuit.

e Pros:
o Very inexpensive and easy to build
o No need for expensive mechanical parts
e Cons:
o Less consistent triggering
o Prone to wear, corrosion, or false positives

o Not suitable for heavy or high-performance use

+ 3. Force-Sensitive Resistors (FSRs)
Best for: Intermediate DIY pads

e Used in: Some high-end DIY projects

e How it works: Measures pressure applied to the sensor—more pressure = lower
resistance.

e Pros:
o Analog input — allows pressure sensitivity
o Flexible placement options
e Cons:
o More expensive than foil
o May need analog-to-digital conversion (ADC) circuitry

o Less tactile feel than switches

+ 4. Capacitive Touch or IR Proximity (Rare)

163

@ Not recommended for dance pads

e Used in: Experimental or futuristic pads
e Cons:
o Not designed for physical stomping

o Too sensitive or unreliable for high-intensity gameplay

"4 Recommendation Summary

Use Case Recommended Why
Sensor

Arcade-qualit Mechanical switches High durability, precision, matches arcade
y behavior

DIY (budget) Foil contact sensors Cheap, easy to build, good for light/moderate

use
DIY FSRs or mechanical Smooth, analog response; mechanical for
(premium) better feel

Let me know your build goals (e.g. USB connectivity, LED response, number of panels,
budget), and | can suggest a full sensor + controller setup for your pad.

[24] Microsoft. (2025). copilot [Al assistant]. Microsoft Corporation.

What would be the best way to create a rhythm game for a beginner?
Would using a game engine be best or are there other alternatives to
complete this objective?

M Great question, Andres! Creating a rhythm game can be a super fun way to
dive into game development, especially if you're into music and timing. Whether
you want to build something simple like Tap Tap Revenge or more intricate like
Friday Night Funkin', here’s how you could get started:

X Best Options for a Beginner

1. Using a Game Engine (Highly Recommended!)

164

Game engines handle graphics, sound, input, and more — all the essentials for a
rhythm game.

e Unity (with C#)
o One of the most popular engines for rhythm games.
o Tons of community tutorials and asset store packages.
o Great audio timing tools via AudioSource and Timeline.
Godot (with GDScript)
Lightweight and beginner-friendly.
Has a built-in animation player and audio support.
Open-source with lots of documentation.

2. No-Code or Low-Code Tools
If coding feels overwhelming, these tools let you focus more on design and logic.

Construct 3 or GDevelop

Drag-and-drop interfaces.

You can create rhythm-based actions with timers and animations.
Perfect for prototyping without writing code.

3. Web-Based Tools
Want to build something playable in a browser?

e p5.js (JavaScript-based creative coding library)
o Lets you sync visuals to audio beats.
o Requires some coding, but great for creative freedom.
e Scratch
Ultra beginner-friendly.
e You can make simple rhythm games with sprite animations and sound
blocks.

I] Core Elements of a Rhythm Game
Here’s what you'll need to think about, regardless of the tool:

Beat detection or fixed timing system

Input controls (keyboard, touchscreen, etc.)
Visual cues (like notes or arrows)

Sound synchronization

Scoring system

%’ Kickstart Suggestions
e Try recreating a tiny version of an existing rhythm game — like one level

with simple visuals and sounds.
e Use free music tracks or sound effects to experiment.

165

e Focus on getting the timing and feel right — rhythm games live and die by
how satisfying the feedback is.

If you tell me what kind of theme or vibe you're thinking for the game, | can help
brainstorm mechanics or even give you a starter outline to build from. Got a
favorite rhythm game you’re trying to emulate?

For a 9-directional dance pad that connects to a PC via USB and also controls an LED
panel, you'd want a microcontroller unit (MCU) that supports:

["4 USB HID (Human Interface Device) for PC input recognition

"4 Enough GPIO pins for 9 directional inputs

"4 Communication protocols like SPI or 12C to control an LED driver
"4 Good community support and libraries for ease of development

Here are some solid MCU options:

- Recommended MCUs

MCU Model USB GPIO LED Driver Notes
Support Pins Communication
Arduino Native USB ~20 SPIl/12C Easy to use, great
Leonardo HID for beginners
Teensy 4.0 Native USB ~40 SPI/I12C Very fast, compact,
HID and powerful
Raspberry Pi USB HID via ~26 SPIl/I2C Affordable and
Pico TinyUSB flexible with RP2040
chip
STM32F103 USB HID via ~37 SPI/12C More advanced,
("Blue Pill") libraries great performance

4 LED Driver Compatibility
If you're using something like the BCT3119 9-channel constant-current LED driver,

which uses SPI for control, all the above MCUs can communicate with it via SPI. You’ll
just need to ensure voltage compatibility (most are 3.3V or 5V).

< Dance Pad Input

Each directional pad switch can be wired to a digital input pin. Use internal pull-up
resistors and debounce logic in software to ensure clean input signals.

M pC Integration

166

For USB connection to the PC:

e Arduino Leonardo and Teensy natively support USB HID, so they can emulate
a keyboard or game controller.

e Raspberry Pi Pico can use the TinyUSB library to emulate HID devices.

e STM32 requires more setup but is highly customizable.

Would you like help wiring the pad or writing the firmware logic for input and LED
control?

For arcade-grade and DIY dance pads, the type of panel sensor you choose is crucial
for responsiveness, durability, and overall gameplay experience. Here's a breakdown of
the best options:

¥ Top Sensor Types for Dance Pads
1. Conductive Plate Sensors (Arcade Style)

Used in original DDR and Pump It Up arcade machines

Two metal plates separated by foam or spring material

Pressure from a footstep compresses the gap, completing the circuit
["4 Highly responsive and durable

“, Requires precise construction and materials

2. FSR (Force Sensitive Resistor) Sensors

Detect pressure changes rather than direct contact
Often paired with microcontrollers like Arduino
74 Great for custom sensitivity tuning

I\ May require calibration and software setup
FSR pad quide offers excellent DIY instructions

3. Chinese Arcade Sensors (AliExpress)

Affordable and widely used in DIY builds

Typically black rubber sensors with JST connectors

74 Easy to install and replace

¢+ Highly recommended by DIY builders on Reddit and Instructables

4. 3D Printed Spring Sensors

Innovative DIY option using flexible plastic as the spring
Copper tape used for conductivity
74 Customizable and cost-effective
I\ Long-term durability depends on material choice (PLA vs. Nylon)
Detailed build quide available

‘X Recommended for DIY Builders

167

https://github.com/hathach/tinyusb
https://sereni.github.io/fsr-pad-guide/
https://www.blowingstuff.com/blog/2020/06/13/piu-pad-sensors.html

e [f you're aiming for arcade-like feel: Conductive plate sensors or Chinese
arcade sensors

e [f you want customization and tech integration: FSR sensors

e for a budget-friendly and creative build: 3D printed spring sensors

Would you like help choosing materials or designing your own pad layout? | can walk
you through a build plan or help source parts.

[25] Gemini. (2025, July 6). [Response to a query about rhythm game development]

What would be the best way to create a rhythm game for a beginner?
Would using a game engine be best or are there other alternatives to
complete this objective?

For a beginner looking to create a rhythm game, using a game engine is
generally the best and most recommended approach. While alternatives exist,
game engines offer significant advantages in terms of ease of use, built-in
features, and community support, which are crucial for someone starting out.

Here's why game engines are ideal and what alternatives exist:

Why Game Engines are Best for Beginners

Game engines provide a framework and tools that simplify many complex
aspects of game development, especially for rhythm games:

e Audio Synchronization: Rhythm games are all about precise timing with
music. Game engines have robust audio systems that make it much
easier to load, play, and synchronize events with audio tracks. Many even
offer tools for beat mapping or have plugins that help analyze audio to
extract beat information.

e Visuals and Animations: Creating the visual feedback for hits, note
scrolling, and character animations is streamlined with an engine's visual
editors and animation tools.

e Input Handling: Game engines simplify capturing player input (key
presses, taps, etc.) and checking them against timed events.

e Physics (if needed): While less critical for core rhythm game mechanics,
if you want any physical interactions (e.g., objects reacting to hits), the
engine's physics engine will handle it.

e Ul Development: Most engines have intuitive Ul systems for creating
scores, combo meters, health bars, and menus.

e Cross-Platform Deployment: If you eventually want your game on
different platforms (PC, mobile, web), engines often have built-in tools for
exporting to multiple targets.

168

Community and Resources: Popular game engines have vast
communities, tutorials, forums, and asset stores, which are invaluable for
learning and troubleshooting.

Recommended Game Engines for Rhythm Games (Beginner-Friendly)

1.

Godot Engine:

o Pros: Free and open-source, lightweight, excellent for 2D games
(which is common for rhythm games), has its own beginner-friendly
scripting language (GDScript, similar to Python), and a growing
community.

o Considerations: While its audio features are good, you might need
to dive a bit into scripting for advanced synchronization.

2. Unity:

o Pros: Extremely versatile, widely used, massive community and
asset store, robust audio tools, and a good choice for both 2D and
3D.

o Considerations: Can be a bit more overwhelming at first due to its
vastness, uses C# for scripting (which is a good language to learn,
but might be a slightly steeper curve than GDScript for absolute
beginners).

3. GameMaker Studio 2:

o Pros: Very beginner-friendly, especially if you prefer a visual
scripting approach (though it also has its own scripting language,
GML), excellent for 2D games, and a good option for quickly
prototyping ideas.

o Considerations: Less powerful for complex 3D games compared
to Unity or Unreal.

Key Considerations for Rhythm Game Development

Regardless of the engine, here are some core concepts you'll need to grasp:

Beat Mapping/Charting: This is the process of defining when notes or
actions should occur in relation to the music. You'll likely need a system
(even a simple one) to "chart" your songs.

Synchronization: This is the most critical aspect. You need to ensure
visual elements and input windows are perfectly aligned with the audio.
Factors like audio latency need to be accounted for.

Input Window/Timing: Define the "perfect hit" window and "good hit"
windows around each beat.

Visual Feedback: Players need clear visual cues for upcoming notes and
immediate feedback for their actions (e.g., a glow on hit, a miss indicator).
Scoring and Combos: Implement a system to track player performance,
scores, and combo streaks.

169

Alternatives to Game Engines

While not recommended for a beginner building their first game, these
alternatives exist:

e Building from Scratch with Programming Languages and Libraries:

o Description: This involves writing all the game logic, rendering,
audio playback, and input handling yourself using a programming
language (like Python with Pygame, JavaScript with a canvas
library, or C++ with SDL/SFML).

o Pros: Complete control over every aspect, deep learning
experience in programming.

o Cons: Significantly more complex and time-consuming for a
beginner. You'd have to implement basic engine features yourself,
which can be a huge hurdle. This is generally only recommended if
your primary goal is to learn low-level game programming rather
than making a game quickly.

e No-Code/Low-Code Platforms (less common for rhythm games):

o Description: Tools like Construct 3 or GDevelop allow you to
create games with visual scripting and drag-and-drop interfaces,
often without writing traditional code.

o Pros: Extremely beginner-friendly, can create simple games very
quickly.

o Cons: May lack the fine-grained control and advanced audio
synchronization capabilities needed for complex rhythm games.
While you might be able to create a very basic "Simon Says" style
rhythm game, something like Guitar Hero would be challenging.

In summary, for a beginner, a game engine like Godot or Unity is by far the
best way to start creating a rhythm game. They provide the necessary tools
and support to focus on the unique challenges of rhythm game development
without getting bogged down in low-level programming complexities. Start with a
simple concept, maybe just a single note type and a short song, and build up
from there.

For a 9-directional dance pad with USB connectivity to a PC and LED panel control,
you'll need an MCU that offers:

1.

USB HID (Human Interface Device) Emulation: This is crucial for the dance
pad to be recognized by the PC as a gamepad or joystick without requiring
custom drivers.

Sufficient GPIO Pins:

o For the 9-directional pads: Each pad will act as a digital input. You'll
need at least 9 input pins, and potentially more if you use a matrix
scanning approach to reduce pin count.

o For LED Panel Control: The number of pins required depends on the
type of LED panel.

170

m Addressable LEDs (e.g., WS2812B, NeoPixels): These are ideal
as they only require one data pin for a whole string of LEDs, greatly
simplifying wiring. You'd typically need one data pin per LED strip
(e.q., if you have a strip per pad, you'd need 9 data pins).

m Non-addressable LEDs (individual LEDs or common
anode/cathode strips): These will require more GPIOs, possibly
using shift registers (like the 74HC595) or dedicated LED driver ICs
(like the TLC5940) to expand the output pins from the MCU.

3. Processing Power (moderate): While a dance pad doesn't require immense
processing power, the real-time input sensing and LED control will benefit from a
decent clock speed.

4. Memory: Enough memory for your firmware, including debouncing logic for the
pad inputs and potentially LED animation patterns.

Here are some strong MCU candidates, keeping in mind ease of use and community

support:

1. Arduino

Leonardo / Arduino Micro / Adafruit ItsyBitsy MO0/M4 (or similar

SAMD21/SAMD51 boards):

e Pros:
O

e Cons:

Native USB HID: These boards are excellent for emulating USB devices
like keyboards or joysticks directly, which is perfect for a dance pad. The
Arduino Leonardo is specifically cited in DIY dance pad projects for its HID
capabilities.

Easy to program: Arduino IDE and its extensive libraries make
programming very accessible.

Sufficient GPIOs: The Leonardo has 20 digital I/O pins, and boards like
the ItsyBitsy M4 have even more (e.g., 25 digital GPIOs), which should be
enough for 9 inputs and several LED control lines (especially with
addressable LEDs or external drivers).

Good for LED control: Easily integrates with FastLED library for
addressable LEDs. For non-addressable LEDs, you can use
12C/SPI-controlled LED drivers.

Might be slightly more expensive than some bare microcontrollers, but the

development ease often outweighs this.

2. ESP32/ ESP32-S3:

e Pros:
(@)

Built-in Wi-Fi and Bluetooth: While not strictly necessary for your stated
requirements, this opens up possibilities for wireless connectivity in the
future, if desired (e.g., for data logging or remote control).

Plenty of GPIOs: ESP32 boards typically have a good number of GPIOs
(around 30-40 depending on the specific module).

Fast processing: Dual-core processors in some ESP32 models provide
ample power.

171

o

o

e Cons:

USB-to-Serial converter built-in: Many ESP32 boards have a CP2102
or similar chip, making uploading code easy. Some newer ESP32-S3
boards even offer native USB for direct HID emulation, like the Arduino
options.

Good for LED control: Excellent support for FastLED and other LED
libraries.

Might have a slightly steeper learning curve than basic Arduino boards if

you're completely new to microcontrollers, but the community is huge.

3. Raspberry Pi Pico / Pico W:

e Pros:
(@)
(@)

o

e Cons:

Low Cost: Very affordable.

RP2040 Microcontroller: Designed by Raspberry Pi, it's a powerful chip
for its price point.

Programmable I/O (PIO): This is a unique feature that allows for highly
precise and flexible control over I/O, which could be useful for advanced
LED patterns or precise input timing.

USB MicroPython/CircuitPython/C++: Supports multiple programming
environments, including CircuitPython which makes USB HID incredibly
straightforward.

Good GPIO count: Sufficient pins for your needs.

While powerful, the ecosystem might feel a bit less mature for beginners

compared to Arduino, though CircuitPython bridges this gap very well.

Key Considerations for your project:

e Input Method for the Dance Pad:

o

Individual Switches: Each of the 9 directions (and potentially a center
button) can be a simple momentary switch. You'll need debouncing in your
code to prevent multiple readings from a single press.

Matrix Scanning: If you want to reduce the number of GPIOs, you can
arrange your switches in a matrix (rows and columns). The MCU would
then scan the matrix to detect pressed buttons. This is more complex to
implement in code but saves pins. Given 9 directions, individual switches
are likely manageable.

e LED Panel Control:

o

Addressable LEDs (WS2812B/NeoPixels): Highly recommended. You
connect the data line of your LED strip to a single GPIO pin, and then you
can control each LED's color and brightness individually with simple code.
This is much simpler than wiring up individual LEDs or complex matrices.
Non-addressable LEDs with drivers/shift registers: If your LED panel
uses standard non-addressable LEDs, you'll need external components
like MOSFETs for power switching and potentially shift registers or
dedicated LED driver ICs (e.g., TLC5940, MAX7219) to control many
LEDs with fewer MCU pins.

172

e Power Supply: Consider the power requirements of your LED panel. If it's a
large panel, it will likely need its own dedicated power supply, and you'll switch
the power on/off through the MCU using a relay or MOSFET.

Recommendation:

For a good balance of ease of use, robust USB HID, and sufficient GPIOs for both input
and LED control, an Arduino Leonardo or an Adafruit ItsyBitsy M0/M4 (or similar
SAMD21/SAMDS51 based board) would be excellent choices, especially if you plan to
use addressable LEDs. They offer straightforward programming and great community
support for HID emulation. If you want to experiment with wireless capabilities or a
slightly more powerful platform for future expansion, the ESP32-S3 (with native USB) or
Raspberry Pi Pico W are also strong contenders.

For both arcade-grade dance pads and DIY dance pads, the best type of panel sensor
often comes down to a balance of durability, sensitivity, and ease of
implementation.

Here's a breakdown of the most common and recommended sensor types:

1. Force-Sensing Resistors (FSRs)

Why they are often considered the best, especially for DIY and modern arcade
pads:

e Sensitivity and Precision: FSRs change their resistance based on the pressure
applied, allowing for very precise and customizable sensitivity. This means you
can finely tune how much force is needed to register a step. Modern pads like the
StepManiaX Generations 4+ use FSRs.

e Thin Profile: They are incredibly thin, making them easy to integrate into existing
pad structures or incorporate into DIY builds without significantly altering the
panel height or feel.

e DIY Friendly: FSRs are relatively straightforward to wire up to microcontrollers
like Arduino or Teensy boards. Many online guides and firmware options exist
specifically for FSR-based dance pads.

e Individual Sensor Thresholds: With FSRs, each sensor's sensitivity can be
adjusted individually in software, which is great for personalizing the pad's
response and reducing issues like double-triggering from vibrations.

e Cost-Effective: While not as cheap as some rudimentary DIY methods, FSRs
are generally affordable for the performance they offer.

Considerations:

e Durability (can vary): While robust, care is needed during installation to prevent
bending or kinking, which can affect their lifespan. Proper mounting and
protection are important.

173

e Non-linear Response: Their resistance change can be non-linear, which
requires careful calibration in software to achieve consistent sensitivity across the
pressure range.

e Drifting: Some users report that FSRs can be prone to "drifting"” over time,
meaning their readings might subtly change, requiring occasional recalibration.

2. Arcade Sensors (Rubber Contact Sensors with L-Brackets)
The traditional choice for official arcade machines:

e Durability: These sensors are designed to withstand years of heavy stomping in
arcade environments. They typically involve a rubber strip with an air bladder and
metal L-brackets that press down to complete a circuit.

e Reliability: When properly maintained, they offer consistent and reliable input.

e Authentic Feel: Many players prefer the distinct "feel" of genuine arcade
sensors.

Considerations:

e Cost: Genuine arcade sensors can be quite expensive, especially if sourced
new. Reproduction sensors are available and more affordable.

e Complexity of Installation: Retrofitting them into a DIY pad can be more
involved as they require specific channels and L-brackets for proper actuation.

e Maintenance: They often require padding (tape, paper) under or above the
L-bracket to adjust sensitivity and maintain responsiveness over time.

3. Contact Sensors (DIY Metal Plates/Foil)
A common and inexpensive DIY method:

e Simplicity and Low Cost: This method involves two conductive surfaces (like
aluminum foil or metal plates) separated by a compressible material (like foam or
weather stripping). When pressed, they make contact and complete a circuit.

e Easy to Understand: The concept is very basic, making it a popular starting
point for DIYers.

Considerations:

e Durability: Aluminum foil can tear easily, and other materials may degrade over
time, leading to inconsistent performance.

e Sensitivity Issues: Achieving consistent and precise sensitivity can be
challenging. "Penny modding" is a common technique to increase sensitivity in
pads using this principle (like some LTEK pads).

e Bounce/Double Triggers: The mechanical nature of contact sensors can
sometimes lead to "bouncing" or double-triggering, where a single step registers
multiple inputs. This often requires debouncing in software.

174

Less Common/Emerging Options:

e Load Cells: These are highly accurate force sensors, often used in industrial
applications. Some high-end DIY pads or custom builds might incorporate them
for extremely precise pressure detection. However, they are generally thicker and
require more complex electronics (amplifiers) to interface with microcontrollers.

e Velostat: A pressure-sensitive conductive material that can be cut into sheets.
Some early FSR pads used Velostat, but standard FSR modules are now more
commonly preferred for consistency.

e Capacitive Sensors: While explored for dance pads, they can be sensitive to
environmental factors (like moisture) and shoe types, making them less ideal for
consistent performance.

Recommendation:

For arcade-grade dance pads, modern designs are increasingly leaning towards FSRs
due to their precise sensitivity, customizability, and relatively thin profile, while still
offering excellent durability with proper implementation. The traditional arcade rubber
contact sensors remain a strong, durable, and authentic choice if available and within
budget.

For DIY dance pads, Force-Sensing Resistors (FSRs) are generally the best choice.
They offer an excellent balance of performance, ease of use with microcontrollers (like
Arduino), and the ability to customize sensitivity to a high degree, allowing for a
near-arcade quality experience without the higher cost or complexity of true arcade
sensors. If you're on a very tight budget or just experimenting, simple contact sensors
can be a starting point, but be prepared for potential durability and consistency issues.

[26] DeepSeek (2024), [large language model developed by DeepSeek Al].

Creating a rhythm game as a beginner is an exciting challenge! Using a game
engine is overwhelmingly the best choice for a beginner. Here's why and how to
approach it:

Why a Game Engine is Best:

Abstraction of Complexity: Engines handle graphics rendering, physics (if
needed), input management, audio playback, and cross-platform deployment.
You focus on your game logic.

Built-in Tools: Visual editors, animation systems, asset managers, and debuggers
significantly speed up development.

Asset Pipelines: Easily import graphics, sounds, and music.

175

Community & Resources: Massive tutorials, documentation, forums, and asset
stores specifically for game engines. Crucial for learning.

Rapid Prototyping: Test core mechanics (like hitting notes to the beat) very
quickly.

Precision Timing: Engines provide high-resolution timers and frame-independent
update loops, essential for rhythm game accuracy.

Recommended Game Engines for Beginners (Rhythm Focus):
Unity (C#):

Pros: Largest community & tutorials, vast asset store, powerful & flexible,
excellent 2D & 3D support, good performance. Many rhythm game tutorials exist.

Cons: Can feel bloated for very small projects, newer input system has a learning
curve.

Why for Rhythm: Mature audio APIs (AudioSource, AudioClip), coroutines for
timing, strong animation tools for note highways/effects. Great for both 2D and
3D rhythm games.

Godot (GDScript - Python-like, C#):
Pros: Lightweight, fast, completely free & open-source, incredibly intuitive
scene/node system, excellent 2D support, growing community. GDScript is easy

to leamn.

Cons: Smaller community/resources than Unity (but growing fast), 3D is capable
but less mature than Unity/Unreal, asset store smaller.

Why for Rhythm: Built-in AudioStreamPlayer nodes, strong signal system for
event handling (great for hit/miss events), Tween nodes for smooth animations.
Very well-suited for 2D rhythm games.

Unreal Engine (Blueprints Visual Scripting, C++):

Pros: Stunning visuals "out of the box," powerful Blueprints visual scripting (great
if you struggle with text code), best-in-class 3D.

Cons: Steeper learning curve overall, larger download/overhead, C++ is complex
for true beginners, potentially overkill for a simple 2D rhythm game.

Why for Rhythm: Robust audio system, Blueprints can be used for core timing
logic, great for ambitious 3D rhythm games (like VR).

176

Avoid (for a Beginner) / Use With Caution:

Pure Programming Languages (Python/Pygame, JavaScript/HTMLS Canvas,
C++/SDL, Java/LibGDX):

Pros: Maximum control, deep learning, lightweight.

Cons: You have to build everything from scratch: rendering shapes/sprites,
playing sounds precisely, handling input, managing game states, timing. High risk
of getting bogged down in low-level details before making game progress. Audio
timing precision is notoriously tricky without engine help.

When Consider? Only if you have significant programming experience already
and specifically want the challenge of building the underlying systems. Not
recommended for a first project.

Best Approach for a Beginner Using an Engine:

Choose Your Engine: Pick Unity (broadest resources) or Godot (simplicity, great
2D) based on your preference. Download it.

Start TINY: Your first goal is NOT "Guitar Hero Clone." Aim for: "A single button
that | have to press when a moving dot hits a line, synchronized to a simple drum
beat."”

Learn Engine Fundamentals:
Follow the official "Getting Started" tutorials for your engine.

Understand core concepts: Scenes/Objects, Components/Nodes, Transforms,
Basic Scripting (C# for Unity, GDScript for Godot).

Core Rhythm Prototype:
Audio: Import a short, simple loop (e.g., a 4-beat drum pattern). Learn to play it.

Note Spawning: Write code to spawn a visual object (a cube, circle) at a specific
time before it needs to be hit. Hardcode the timing at first.

Note Movement: Move the spawned object towards a "hit line" at a constant
speed. Ensure its arrival time matches the beat time.

Input Detection: Detect when the player presses the designated key (e.g.,
Spacebar).

Judgment: When the key is pressed, check the distance of the note object to the
hit line.

Very close (e.q., within 50ms window): "Perfect!" (Destroy note, add score).

177

Close (e.g., 50-100ms): "Good!"

Too early/late: "Miss!" (Destroy note, maybe show penalty).

Feedback: Show text ("Perfect!”), play sounds, add particle effects on hit/miss.
Refine & Expand: Once the core loop works:

Level Design: Create a system (like a text file or simple array) to define note
timings instead of hardcoding.

Multiple Lanes/Buttons: Add more hit lines and map them to different keys (e.q.,
Left/Right Arrow, A/S/D keys).

Better Graphics: Replace cubes with sprites, add a background.
Ul: Add a start screen, score display, combo counter.

Music: Use a full song instead of a loop. Crucially, learn about audio offset
calibration to sync your note timing perfectly with the track in the engine.

Difficulty: Adjust note speed, timing window size, or note density.
Crucial Rhythm Game Specifics:

Precise Timing: Use the engine's high-resolution time (Time.time in Unity,
OS.get ticks_usec() in Godot) for judgment, not frame-based logic. Account for
display latency if needed (less critical early on).

Audio Analysis (Advanced): Initially, manually chart your note timings by listening
to the song. Later, explore tools or libraries (like BASS, FMOD integration) for
beat detection, but manual charting is standard for precise rhythm games.

Input Lag: Be aware that monitors/TVs, audio devices, and peripherals add lag.
Calibration settings in your game are essential later on.

Alternatives ONLY if Engines Feel Too Heavy (Still Not Ideal):
Specialized Frameworks:

LOVE (Lua): Simpler framework than raw OpenGL, but still requires building
most systems. Lua is easy to learn.

Phaser (JavaScript): Web-based framework. Good if you know JS and want a
web game. Still requires more setup than an engine.

Rhythm Game Creation Tools (Limited): Tools like "K-Shoot Mania Editor" or
"StepMania/Etterna Editor" exist, but they are for creating charts for existing,
specific rhythm game engines, not building your own unique game from scratch.

178

Conclusion:

Start with a game engine (Unity or Godot are top recommendations for
beginners). Focus relentlessly on building the tiniest possible playable rhythm
prototype (one button, one note type, one beat). Learn the engine fundamentals
through that process. Resist the urge to build your dream game immediately.
Completing a tiny, functional prototype is infinitely more valuable and motivating
than getting lost in the complexity of a "from-scratch" approach or an overly
ambitious first design. Good luck!

For a **9-directional dance pad** with **USB connectivity** to a PC and **LED control™*,
you'll need an **MCU** with the following features:

- **USB HID** (for input as a game controller)
- **GPIOs™** for button matrix scanning (9 directions + optional extras)

- **Hardware communication™ (I?°C, SPI, or UART) for an LED driver (e.g., WS2812B,
PCA9685, or TLC5940)

- **Sufficient processing power** for real-time input & LED updates

###t **Best MCU Options™*

**1. Raspberry Pi Pico (RP2040) — Best Budget & Flexible Choice™*
- **Pros™**:
- Cheap (~$4-$5)
- Dual-core Cortex-MO0+ (good for multitasking)
- Built-in USB (can act as HID device)
- Many GPIOs (supports button matrix + LED driver)
- Easy CircuitPython/MicroPython/C++ support
- **Cons™*:
- Requires manual USB HID setup (but libraries exist)

- **Best for**: DIY projects where cost matters

179

###H# **2. Arduino Leonardo/Pro Micro (ATmega32U4) — Best Plug-and-Play USB HID**

- **Pros™*:
- Native USB HID (recognized as a keyboard/joystick instantly)
- Works well with button matrices

- Can control LEDs via I?*C/SPI (e.g., using FastLED for addressable LEDs)

_ **Cons**..
- Limited RAM/Flash (but enough for this project)

- **Best for**: Quick USB game controller setup

##HE **3. ESP32-S3 (Native USB) — Best for Wireless + Advanced Features™*
- *Pros™**:
- Native USB (can act as HID)
- Wi-Fi/Bluetooth (if you want wireless options later)
- Fast, dual-core, plenty of GPIOs
- **Cons™*:
- Slightly more expensive (~$10)

- **Best for**: Future-proofing (if you want wireless later)

#HiHHE **4. STM32 Blue Pill (STM32F103) — Best for High Performance**
- **Pros™**:
- Fast Cortex-M3, lots of peripherals
- Can do USB HID with some setup
- **Cons™*:

- Requires more firmware work

180

- **Best for**: Advanced users who need speed

“*Recommended Setup™*

1. *MCU**: **Raspberry Pi Pico™* (best balance of price & features)

2. **Button Input**: 3x3 matrix (9 switches) + optional debouncing

3. **LED Driver**:
- For addressable LEDs (WS2812B), use FastLED or NeoPixel libraries
- For PWM control (e.g., PCA9685), use I’C

4. **USB™**: Configure as HID joystick (CircuitPython/Arduino libraries available)

#i## “*Alternative Approach™*

If you want **plug-and-play USB**, an **Arduino Pro Micro (ATmega32U4)** is the
easiest since it natively supports HID.

Would you like a basic wiring diagram or code examples for any of these?

For **arcade-grade dance pads* and high-quality **DIY dance pads**, the best sensor
type is typically a **FSR (Force-Sensitive Resistor)** or a **conductive foam-based
contact sensor**, depending on durability, sensitivity, and cost requirements.

Best Sensor Types for Dance Pads:
1. **FSR (Force-Sensitive Resistor)**
- *Pros:**
- Highly sensitive to pressure (works with light to heavy steps).
- Durable (long lifespan, resistant to wear).
- Used in premium arcade pads (e.g., DDR official cabinets).

- **Cons:**

181

- More expensive than other options.

- Requires proper wiring and conditioning circuits.

2. **Conductive Foam + Metal Contacts (Arcade-Style)**
- **Pros:**
- Used in original arcade machines (e.g., DDR, PIU).
- Provides a tactile "click" feel when stepped on.
- Reliable and long-lasting when built correctly.
- **Cons:**
- Requires precise alignment and maintenance.

- Can wear out over time (foam compresses).

3. **Velostat-Based Pressure Sensors (DIY-Friendly)**
- *Pros:**
- Cheap and easy to make at home.
- Works by pressure changing resistance.
- **Cons:**
- Less consistent than FSRs.

- Wears out faster.

4. **Mechanical Microswitches (Less Common)**
- *Pros:**
- Tactile feedback (clicky response).
- Durable if high-quality switches are used.

_ **Cons:**

182

- Requires significant force to activate.

- Can feel stiff compared to arcade pads.

#ittt **Best Choice ?**

- *For arcade-grade pads:** **FSR** or **conductive foam + metal contacts** (most
authentic).

- **For DIY builds on a budget:** **Velostat-based sensors™* or **soft potentiometers™*,

- **For a balance of cost and quality:** **FSRs** (best for serious players).

Would you like recommendations for specific wiring setups or suppliers for these
sensors?

How can we implement computer vision into a dance rhythm game using a
camera?

ChatGPT said:

Implementing computer vision in a dance rhythm game using a camera involves
tracking and interpreting the player's body movements to determine whether they match
specific dance poses or actions required by the game. Here’s a structured overview on
how to implement this:

@ Goal

Use a camera to track player movements and compare them to expected dance
moves in sync with rhythm/music.

&= Core Components

1. Camera Input

e Use a webcam or phone camera to capture real-time video of the player.

183

2. Pose Estimation
e Use a pose estimation model to detect body landmarks (key points like joints).
o Popular libraries:

m MediaPipe Pose

m OpenPose

m MoveNet

e Output: 2D or 3D coordinates of body joints (e.g., wrists, elbows, knees, etc.).

3. Dance Move Definition

e Define expected poses or movements at specific timestamps (like "Step left" at
beat 3).

o Use:

m Pre-defined skeleton positions (keypoint sets).

m Motion sequences.

m Tolerance thresholds for accuracy.

4. Real-Time Matching
e Compare the player’s live pose with the target pose:

o Compute a similarity score (e.g., cosine similarity or Euclidean distance
between keypoints).

o Use Dynamic Time Warping (DTW) or optical flow for matching sequences
over time.

5. Scoring System
e Assign points based on:

o Pose accuracy.

184

https://github.com/CMU-Perceptual-Computing-Lab/openpose

o Timing (sync with beat).

o Smoothness of motion.

6. Rhythm Synchronization

e Sync music/audio cues with target moves using beat detection or predefined
timestamps.

7. User Feedback
e Provide real-time visual or audio feedback like:
o "Perfect", "Good", "Miss"

o On-screen skeleton overlay for correction.

Technologies & Tools

Task Tool/Library
Camera capture OpenCV, MediaPipe
Pose estimation MediaPipe, OpenPose, MoveNet

Real-time feedback Pygame, Unity + Python bridge, Flutter with platform
channels

ML backend TensorFlow / PyTorch
(if needed)

185

Music sync pydub, librosa, Unity Audio Engine

“> Example Architecture (Python)

python
Copy code
import cv2

import mediapipe as mp

mp_pose = mp.solutions.pose

pose = mp_pose.Pose()

cap = cv2.VideoCapture(0)

while cap.isOpened():

success, frame = cap.read()

if not success:

break

Convert the image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

results = pose.process(image)

186

Draw landmarks
if results.pose_landmarks:
mp.solutions.drawing_utils.draw_landmarks(

frame, results.pose_landmarks,
mp_pose .POSE_CONNECTIONS

)

cv2.imshow('Dance Pose Tracker', frame)
if cv2.waitKey(5) & OXFF == 27:

break

cap.release()

< Game Flow Example
1. Load song and predefined move chart.
2. Start camera and detect player pose.
3. At each beat window:
o Compare player’s pose to expected pose.
o If match within threshold, give score.

4. Update visuals and feedback.

1. Challenges

187

e Latency: Ensure low-lag pose detection.
e Lighting conditions: Poor lighting can reduce accuracy.
e Occlusion: Some body parts may be hidden.

e User positioning: Require calibration/setup step to ensure full body is visible.

=] Optional Enhancements
e Use a mobile device as a camera (streaming to desktop game).
e Allow custom choreography creation.
e Use Al dance feedback (“lift arm higher”, “face forward”).

e Add multiplayer mode (track multiple people via pose ID).

Let me know your development environment (e.g., Unity, Python, Flutter), and | can
tailor the code or tools accordingly!

How can we implement computer vision into a dance rhythm game using a camera?

Implementing computer vision into a dance rhythm game using a camera involves
several key steps to track a player's movements and compare them against target
dance moves. Here's a breakdown of how it can be achieved:

1. Real-time Pose Estimation:

e The Core Technology: The most crucial aspect is real-time human pose
estimation. This involves identifying and tracking key points (landmarks) on a
person's body (e.g., head, shoulders, elbows, wrists, hips, knees, ankles) from a
live camera feed.

e Libraries and Frameworks: Several open-source computer vision libraries are
excellent for this:

o MediaPipe Pose: Developed by Google, MediaPipe offers a robust and
efficient solution for real-time pose estimation. It can track up to 33 2D or
3D landmarks on the human body. It's well-suited for interactive
applications due to its performance.

188

o OpenPose: Another popular and powerful library for multi-person 2D pose
estimation. While it might be more resource-intensive, it offers high
accuracy.

o YOLO (You Only Look Once) with Pose Estimation: YOLO is primarily
an object detection model, but variations exist that incorporate pose
estimation capabilities. You might need to train or fine-tune a model for
optimal dance-specific pose detection.

e How it works: These libraries use deep learning models to analyze each frame
of the video feed, locate the human body, and then identify the precise
coordinates of the key points.

2. Data Acquisition and Processing:

e Camera Input: The game will need to capture video frames from a standard
webcam or a more advanced depth camera (like a Kinect, although newer,
software-based solutions are often sufficient).

e Frame-by-Frame Processing: Each frame from the camera needs to be fed into
the pose estimation model.

e Keypoint Extraction: The output of the pose estimation will be a set of
coordinates for each detected body landmark. These coordinates will be the raw
data representing the player's pose at that moment.

3. Reference Dance Data:

e Pre-recorded Choreography: You'll need reference data for each dance move
or sequence. This can be obtained by:

o Motion Capture: Using professional motion capture suits to record a
dancer's movements with high precision. This is ideal for accuracy but can
be expensive.

o Video Analysis: Recording a skilled dancer performing the moves and
then using the same pose estimation techniques to extract their keypoint
data. This is a more accessible and common approach for rhythm games.

o Manual Annotation: While time-consuming, you could manually annotate
key points in reference video frames, though this is generally less practical
for entire dance routines.

e Data Representation: The reference dance data should be stored in a similar
format to the player's real-time keypoint data (e.g., a sequence of keypoint
coordinates over time).

4. Comparing Player Movement to Reference:

e Pose Matching/Similarity: This is the core logic for scoring. You need
algorithms to compare the player's current pose (from the live camera feed) to
the corresponding reference pose at that moment in the song.

e Techniques for Comparison:

189

Euclidean Distance: Calculate the distance between corresponding key
points of the player and the reference. Smaller distances indicate a better
match.

Cosine Similarity: Measure the cosine of the angle between vectors
formed by body segments (e.g., upper arm, forearm, thigh, shin). This
helps with pose orientation.

Dynamic Time Warping (DTW): For comparing entire sequences of
movements, DTW can be invaluable. It allows for variations in timing and
speed, finding the optimal alignment between the player's movement
sequence and the reference sequence. This is particularly useful for
evaluating fluidity and rhythm over a longer period.

Machine Learning/Deep Learning: For more complex evaluations and
style recognition, you could train a machine learning model to classify
poses or evaluate the "correctness" of a move based on a dataset of good
and bad performances.

e Scoring Mechanism: Based on the similarity metrics, you'll assign a score to the
player for each pose or sequence of poses. This score can contribute to the
overall game score.

5. Game Logic and Feedback:

e Rhythm Synchronization: The game needs to know when each specific dance
move is expected to occur in sync with the music. This requires precise timing.
e Visual Feedback:

o

o

o

Overlaying Skeletons: Displaying an overlay of the detected skeleton on
the player's live feed can provide immediate visual feedback.
Color-coding: Highlighting body parts that are correctly or incorrectly
positioned.

On-screen Prompts: Showing visual cues for upcoming moves.

e Auditory Feedback: Sound effects for successful moves or missed cues.
e Scoring Display: Real-time display of the player's score.

6. Development Considerations:

Performance Optimization: Real-time computer vision can be computationally
intensive. You'll need to optimize your code to ensure smooth gameplay,
especially for lower-spec hardware. This might involve:

o
o

o

Frame Rate Management: Processing frames at a consistent rate.
Hardware Acceleration: Utilizing GPUs for faster processing (e.g., with
CUDA or OpenCL).

Model Size and Efficiency: Choosing pose estimation models that are
optimized for speed.

Lighting Conditions: The accuracy of pose estimation can be affected by
lighting. Ensure the game's environment is well-lit for optimal performance.
Occlusion Handling: What happens if a player's hand is hidden behind their
body? Advanced pose estimation models can sometimes infer occluded joints,
but it's a challenge to consider.

190

e Calibration: You might need a calibration step where the player stands in a
neutral pose to help the system understand their proportions and position relative
to the camera.

e User Experience (UX): Make the interface intuitive and the feedback clear.

Example Implementation Flow (Python with MediaPipe and OpenCV):

Install Libraries: pip install opencv-python mediapipe
Initialize Camera: cap = cv2.VideoCapture(0)
Load MediaPipe Pose Model: mp_pose = mp.solutions.pose
Game Loop:
o Read frame from camera: ret, frame = cap.read()
o Preprocess frame (e.g., convert BGR to RGB): frame_rgb =
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
Perform pose estimation: results = pose.process(frame_rgb)
Extract keypoints: if results.pose_landmarks: access
results.pose_landmarks.landmark
o Compare to reference data (e.g., load a pre-recorded sequence of
landmarks for the current dance step).

Calculate score based on pose similarity.
Render feedback (e.g., draw landmarks on the frame, display score).
Display frame: cv2.imshow('Dance Game', frame)
o Check for exit key.
5. Release Resources: cap.release(), cv2.destroyAllWindows()

hON=

o O O

By combining powerful pose estimation techniques with careful game design, you can
create an engaging and immersive dance rhythm game controlled entirely by a camera.

How can we implement computer vision into a dance rhythm game using a camera?

& m Using computer vision in a dance rhythm game opens up some exciting
gameplay possibilities, especially for hands-free interaction and body-based
rhythm tracking. Here’s how you can thoughtfully implement it using a camera
system:

“2 Core Concept

Use a camera to track players' body movements in real time, compare them
against target poses or dance patterns, and score their performance based on
accuracy and timing.

“, Key Components to Implement

191

1. Pose Estimation

e Use models like OpenPose, MediaPipe, or PoseNet to detect and track body
joints.

e These models process video frames and give you a real-time skeleton map
(coordinates of key points like wrists, knees, etc).

2. Rhythm & Timing Detection

e Synchronize detected body movement events (e.g. arm raises, foot taps)
with beat timestamps from the music track.

e Introduce a timing window—similar to traditional rhythm games—where
player actions are only rewarded if they occur within the beat's “perfect”
zone.

3. Action Mapping & Scoring

e Define expected poses or movement sequences per beat.

e Compare detected poses to predefined templates using similarity scores
(e.g. cosine similarity between joint vectors).

e Implement a scoring system based on timing, accuracy, and difficulty.

4. Feedback & Visuals

e Provide real-time visual overlays showing detected joints and scoring
feedback.
e Use skeletal animations or shadow avatars to guide players.

5. Calibration & Accessibility

e Include a calibration step to accommodate different heights, body types,
and camera setups.

o Offer multiple difficulty levels and visual guides for different accessibility
needs.

Prototyping Tools You Might Like

Tool Use Case Why It Works Well

MediaPipe Fast pose detection Lightweight & cross-platform

192

Unity + Game dev + ML model Familiar workflow, compatible

Barracuda integration with C#

OpenCV Image processing & camera Open-source, powerful CV
control toolkit

Godot + Lightweight integration Great for prototyping with

GDNative Godot

M Gameplay Ideas with Computer Vision

e Mirror Match Mode: Players mimic poses of an on-screen dancer to the
beat.

e Gesture-to-Rhythm: Players trigger effects or score by hitting key poses
rhythmically.

e Freestyle Mode: Al evaluates style and flow, scores based on creativity +
alignment to beat.

If you’re thinking of using this in a beginner-friendly engine like Godot, | can help
sketch out how to plug in MediaPipe or OpenCV through GDNative or custom
modules. Want to go deeper on tech setup or gameplay design next?

Rhythm synchronization in a Godot project can be implemented in several ways,
depending on the complexity and purpose (e.g. syncing gameplay events to
music beats, rhythm-based input timing, etc.). Below is a general approach to
implement rhythm synchronization in Godot (GDScript):

] Step-by-Step: Basic Beat Synchronization System in Godot

1. Choose or Load a Music Track

Load the music using an AudioStreamPlayer node.
gdscript

CopyEdit

193

MusicPlayer.gd

extends AudioStreamPlayer

func _ready():

play() # Start music

2. Determine BPM (Beats Per Minute)

You need to know the BPM of your music track. For example, if it's 120 BPM:
gdscript

CopyEdit

const BPM = 120

const BEAT_INTERVAL = 60.0 / BPM # Seconds per beat

3. Create a Beat Timer

Use a timer to track beats in sync with the song.
gdscript

CopyEdit

extends Node

const BPM = 120

const BEAT_INTERVAL = 60.0 / BPM

194

var beat_timer := 0.0

var current_beat := 0

onready var music_player := SAudioStreamPlayer

func _ready():

music_player.play()

func _process(delta):
beat_timer += delta
if beat_timer >= BEAT_INTERVAL:
beat_timer -= BEAT_INTERVAL
current_beat += 1

_on_beat()

4. Define the _on_beat () Callback

Trigger anything that should happen on the beat.

gdscript
CopyEdit
func _on_beat():

print("Beat:", current_beat)

Call animations, spawn enemies, change colors, etc.

195

5. (Optional) Improve Accuracy with AudioServer Time

Godot’s AudioServer.get_time_since_playback_start() provides more
precise timing:

gdscript
CopyEdit

var last_beat_time := 0.0

func _process(_delta):
var song_time = AudioServer.get_time_since_playback_start()
var beat_number = int(song_time / BEAT_INTERVAL)
if beat_number !'= current_beat:
current_beat = beat_number

_on_beat()

6. Handling Player Input Timing (For Rhythm Games)

To check if a player's input is on-beat, you can calculate the distance to the
nearest beat:

gdscript
CopyEdit

func is_input_on_beat(input_time: float, tolerance: float =
0.15) -> bool:

var beat_number = round(input_time / BEAT_INTERVAL)

var beat_time = beat_number * BEAT_INTERVAL

196

return abs(input_time - beat_time) <= tolerance

Then when input is detected:
gdscript

CopyEdit

func _input(event):

if event.is_action_pressed("hit_note"):

var current_time
AudioServer.get_time_since_playback_start()

if is_input_on_beat(current_time):
print("Good timing!")
else:

print("Miss!")

@@ Bonus Tips

e Use a .beatmap or JSON file if you want more complex rhythm patterns
synced with music.

e Use Godot’s AudioEffectSpectrumAnalyzer for real-time beat detection
(advanced).

e If working in Godot 4, AudioStreamPlayback and PlaybackPosition
APIs offer improved control.

e Always account for latency—especially on mobile or HTML5 builds.

Would you like a downloadable rhythm-based mini-game example or help
integrating this into your existing project?

197

Implementing rhythm synchronization in a Godot project, especially for rhythm
games, requires precise timing and careful consideration of audio latency. Here's
a breakdown of the key concepts and methods you can use:

Core Concepts for Rhythm Synchronization

1. Audio Playback Position: The most crucial element is accurately knowing
the current playback position of your music. Godot's AudioStreamPlayer
nodes are central to this.

2. Latency Compensation: All audio playback has a small, unavoidable delay
(latency) between when a play() function is called and when the sound is
actually heard. This needs to be factored in for precise synchronization.

3. BPM (Beats Per Minute) and Time Signature: Understanding the music's
tempo and structure is essential for calculating when events should occur.

4. Event Scheduling: Instead of relying on _process() or
_physics_process() directly for rhythm events (which can be
inconsistent due to varying frame rates), you should schedule events
based on the audio's timeline.

5. "Conductor" System: A common and effective approach is to create a
"conductor” script or node that manages the music's state, calculates beat
timings, and emits signals for other game elements to react to.

Implementation Strategies in Godot

1. Using AudioStreamPlayer.get_playback_position() and Latency
Compensation

This is the fundamental approach recommended by Godot's official
documentation.

e Get Current Time: You can get the current playback position of an
AudioStreamPlayer using
audio_stream_player.get_playback_position().

e Improve Precision with AudioServer: For even more precision, especially
important in rhythm games, combine get_playback_position() with
AudioServer.get_time_since_last_mix() to get a more real-time
position.

Compensate for Output Latency: Crucially, subtract the
AudioServer.get_output_latency() from your calculated time. This accounts
for the delay between the audio being mixed by the engine and it actually being
heard by the player.

GDScript

func _process(delta):

198

var current_music_time = $AudioStreamPlayer.get_playback_position() +

AudioServer.get_time_since_last_mix() - AudioServer.get_output_latency()

Now use 'current_music_time' to trigger your rhythm events

Initial Playback Delay: When you call play() on an AudioStreamPlayer,
the sound doesn't start immediately. You can estimate this initial delay by
adding AudioServer.get_time_to_next_mix() and
AudioServer.get_output_latency(). This is useful for timing the start
of your game logic with the start of the music.

2. Building a "Conductor"” Node

Many rhythm game tutorials advocate for a dedicated "Conductor” node. This
node is responsible for:

Storing Music Data: BPM, time signature, and potentially a "chart"” of
upcoming events (notes, enemy spawns, etc.) with their corresponding
beat/time.

Calculating Beat Times: Based on the BPM, the conductor calculates the
precise time (in seconds) for each beat, measure, or any other rhythmic
subdivision.

Emitting Signals: As the current_music_time (calculated with latency
compensation) passes a scheduled event's time, the conductor emits a
signal. Other game objects (e.g., note spawners, animations, Ul elements)
can then connect to these signals and react accordingly.

Example Conductor Node Structure (GDScript):

GDScript

extends Node

@export var bpm: float = 120.0

@export var audio_stream_player: AudioStreamPlayer

@export var initial_offset: float = 0.0 # Time in seconds before the first beat

signal beat_triggered(beat_number)

signal measure_triggered(measure_number)

199

signal custom_event_triggered(event_id)

var _current_beat: int = -1
var _current_measure: int = -1
var _beat_interval: float

var _start_time: float = 0.0

func _ready():
_beat_interval = 60.0 / bpm
if audio_stream_player:
audio_stream_player.play()
Account for initial audio playback delay

_start_time = Time.get_ticks_usec() / 1.000_000.0 +
AudioServer.get_time_to_next_mix() + AudioServer.get_output_latency()

else:

If no AudioStreamPlayer, just start counting immediately (useful for
debugging or non-audio sync)

_start_time = Time.get_ticks_usec() / 1_000_000.0

func _process(delta):

var elapsed_time = (Time.get_ticks_usec() / 1_000_000.0) - _start_time -
AudioServer.get_output_latency()

If using an AudioStreamPlayer, ensure we're getting the most accurate time
if audio_stream_player and audio_stream_player.is_playing():

elapsed_time = audio_stream_player.get_playback_position() +
AudioServer.get_time_since_last_mix() - AudioServer.get_output_latency()

200

var target_beat = floor((elapsed_time - initial_offset) / _beat_interval)

if target_beat > _current_beat:
_current_beat = target_beat
emit_signal("beat_triggered"”, _current_beat)
You can also emit measure_triggered here if you track time signature
For example, if 4 beats per measure:
var target_measure = floor(_current_beat / 4.0)
if target_measure > _current_measure:
_current_measure = target_measure

emit_signal("measure_triggered"”, _current_measure)

Example of triggering custom events from a pre-defined chart

This would involve loading an array of dictionaries or custom resources
for your song's events:

for event in song_chart:

if elapsed_time >= event.time_to_trigger and not event.triggered:

emit_signal("custom_event_triggered", event.id)

event.triggered = true # Mark as triggered to avoid multiple emissions

3. Using the RhythmNotifier Addon

Godot's Asset Library offers the RhythmNotifier addon (Godot 4). This addon
provides a RhythmNotifier class that simplifies beat synchronization.

201

e Features: It emits rhythmic signals synchronized with an
AudioStreamPlayer, accounting for output latency. You can define
custom signals to emit on specific beats or repeatedly.

e Usage:

1. Install RhythmNotifier from the Godot Asset Library.

2. Add a RhythmNotifier node to your scene.

3. Set its BPM property.

4. Optionally, drag your AudioStreamPlayer node onto its Audio
Stream Player property.

5. Use its beats() method to create and connect to signals.

GDScript
Example using RhythmNotifier (from its documentation)

@onready var rhythm_notifier: RhythmNotifier = $RhythmNotifier

func _ready():
rhythm_notifier.opm = 120.0

rhythm_notifier.audio_stream_player = $MyAudioPlayer # Assign your
AudioStreamPlayer

rhythm_notifier.beats(1).connect(on_beat) # Emit signal every beat

rhythm_notifier.beats(4, false, 3).connect(on_specific_beat) # Emit on beat 3
(once)

$MyAudioPlayer.play()

func on_beat(beat_count: int):
print("Beat! Current beat: ", beat_count)

Trigger visual effects, spawn notes, etc.
func on_specific_beat(_beat_data):

print("Specific beat reached!")

202

This addon can significantly reduce the boilerplate code needed for rhythm
synchronization.

4. Charting System (for complex rhythm games)

For games like Guitar Hero or Friday Night Funkin’, you'll need a robust charting
system:

External Data: Instead of hardcoding events, define your song's events
(note timings, enemy spawns, etc.) in an external format (JSON, CSV,
custom text file).

Loading Charts: Your game loads this chart data at runtime.

Event Queue: As the music plays, the conductor (or a dedicated chart
reader) checks the chart for upcoming events based on the current music
time and triggers them.

Editor: For complex games, you might even build a simple in-game or
external editor to create these charts visually, aligning events with the
music.

Key Considerations for Precision

Audio File Format: Use uncompressed formats like WAV for rhythm-critical
audio to minimize decoding overhead and potential delays.

Project Settings (Audio Latency): In Godot's Project Settings, under Audio
-> Driver -> Output Latency, you can try reducing the default value
(e.g., from 15ms to 5ms) to minimize audible delay. Be aware that lower
latency can increase CPU usage and potentially lead to audio crackling if
your system struggles.

_process vs. _physics_process: For rhythm game logic, it's generally
better to base your timing on _process (which runs every frame) or the

audio thread's actual position rather than _physics_process (which has a
fixed tick rate, potentially leading to less granular timing).

User Calibration: For the best player experience, consider implementing an
in-game calibration system where players can adjust a global offset to
compensate for their specific audio setup and their own reaction time. This
allows them to fine-tune the synchronization to feel perfect.

Visual and Audio Cues: Ensure your visual cues (notes appearing, hit
animations) and audio cues (hit sounds, music changes) are tightly
synchronized. A slight visual offset can be tolerated more than an audible
one.

By combining these strategies and paying close attention to Godot's audio timing
features, you can successfully implement robust rhythm synchronization in your
projects.

203

To implement computer vision in a dance rhythm game using a camera, follow this
structured approach:

1. Pose Detection
Technology: Use MediaPipe Pose or OpenPose for real-time body landmark detection.

Keypoints: Track critical joints (wrists, elbows, shoulders, hips, knees, ankles).
Output: 2D/3D coordinates of body joints from each camera frame.

2. Move Definition & Tracking

Predefined Moves: Create a library of dance moves (e.g., arm raises, squats, spins)
with expected joint positions/angles.

Tracking Logic:

Calculate joint angles (e.g., elbow angle via vectors between shoulder-elbow-wrist).
Measure limb positions relative to the body (e.g., "left hand above head").

Detect motion vectors (e.g., rapid upward leg movement for a kick).

3. Rhythm Synchronization
Beat Mapping: Design beat maps (like DDR step charts) with:

Timestamps: When moves should be performed.
Move IDs: Expected move for each beat.
Timing Windows: Define hit windows (e.g., £250ms around the beat) for scoring.

4. Move Validation & Scoring
Similarity Check: Compare player's pose with the expected move using:

Cosine similarity for joint angles.
Euclidean distance for keypoint positions.

Scoring:

204

Perfect/Good/Miss based on timing and pose accuracy.

Combo multipliers for consecutive hits.

5. Game Interface
Feedback Overlays:

Display the next move (e.g., arrow directions, limb icons).

Show real-time pose with skeleton overlays.

Highlight scoring (e.g., "PERFECT!") and combo counters.

Camera Feed: Show player’s video with augmented graphics.

6. Technical Implementation
Tools:

Python with OpenCV (camera handling).
MediaPipe (pose estimation).

PyGame or Unity (game Ul/rendering).
LibROSA (audio beat tracking).
Workflow:

Capture camera frames.

Run pose estimation per frame.

For each beat in the map:

Check if current time is within the beat’s hit window.

Validate pose similarity to the expected move.

Update score and feedback.

205

Render Ul with camera feed, move prompts, and score.

7. Optimization Tips
Robustness:

Use filtering (e.g., Kalman filter) to smooth jittery joint data.
Handle occlusions via interpolation or historical data.
Calibration: Normalize poses to the player’s height/arm span at the start.

Performance: Reduce input lag by optimizing pose estimation (e.g., lower-resolution
processing).

Example Code Snippet (MediaPipe + PyGame)
python

import cv2

import pygame

import mediapipe as mp

Initialize MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

PyGame setup
pygame.init()
screen = pygame.display.set_mode((800, 600))

Beat map example: [(time_ms, expected_move)]
beat_map = [(1000, "ARM_UP"), (2000, "SQUAT")]

def check_move(expected, landmarks):

if expected == "ARM_UP":
Check if wrists are above shoulders
left_wrist = landmarks[mp_pose.PoseLandmark.LEFT_WRIST]
left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER]
return left_wrist.y < left_shoulder.y

elif expected == "SQUAT":
Check if hips are below knees
left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP]

206

left_knee = landmarks[mp_pose.PoseLandmark.LEFT_ KNEE]
return left_hip.y > left_knee.y
return False

cap = cv2.VideoCapture(0)
clock = pygame.time.Clock()
start_time = pygame.time.get_ticks()

while True:
Process camera frame
ret, frame = cap.read()
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = pose.process(rgb_frame)

Get current time
current_time = pygame.time.get_ticks() - start_time

Check beat map
for beat_time, move in beat_map:
if abs(current_time - beat_time) < 250: # 250ms window
if results.pose_landmarks and check_move(move,
results.pose_landmarks.landmark):
print("HIT!")

Render Ul (simplified)
screen.fill((0, 0, 0))
... draw game elements here ...

pygame.display.flip()
clock.tick(30)

Challenges & Solutions

Latency: Use lightweight models and skip frames if needed.

Varying Body Types: Normalize joint positions to the player’s torso size.
Complex Moves: Break moves into phases (e.g., "wind-up" and "kick").

Lighting/Background: Use background subtraction or depth cameras.

This approach creates an engaging, movement-based rhythm game where players
physically perform dance moves tracked via camera.

207

Implementing rhythm synchronization in Godot involves aligning game events (like
character movements, enemy attacks, or visual effects) to the beat of background
music. Here's a step-by-step guide:

1. Core Concept: The Conductor
Create a "Conductor" (autoload/singleton) that tracks musical timing. It calculates beat
positions using the song's BPM and compensates for audio latency.

Conductor Script (conductor.gd):

gdscript
extends Node

Configuration

var bpm: float = 128.0 # Beats Per Minute

var measures: int =4 # Beats per measure (e.g., 4/4 time)
var song_position: float = 0.0

var song_position_in_beats: int = 0

var sec_per_beat: float = 0.0

var last_beat: int=0

var offset: float = 0.45 # Calibration offset (adjust per project)

Audio
var music_player: AudioStreamPlayer

Signals
signal beat(position) # Emitted every beat (position = beat count)
signal measure(position) # Emitted every measure (position = measure count)

func _ready():
sec_per_beat =60.0 / bpm
music_player = $AudioStreamPlayer # Attach your AudioStreamPlayer node

func start_song():
song_position = 0.0
song_position_in_beats = 0
last beat=10
music_player.play()

func _process(_delta):

208

if music_player.playing:
Calculate position with latency compensation
song_position = (
music_player.get_playback_position() +
AudioServer.get_time_since_last_mix() -
AudioServer.get_output_latency()
) - offset

Track beats
song_position_in_beats = int(floor(song_position / sec_per_beat))

Emit signals on new beats
if song_position_in_beats > last_beat:
last_beat = song_position_in_beats
emit_signal("beat", song_position_in_beats)
Emit measure signal every X beats
if song_position_in_beats % measures == 0:
emit_signal("measure", song_position_in_beats / measures)
2. Setup the Conductor
Create the Conductor:
Attach conductor.gd to a node in a new scene.
Add an AudioStreamPlayer as its child (load your music file).
Save the scene as Conductor.tscn.
Register as Autoload:
Go to Project > Project Settings > Autoload.

Add Conductor.tscn as a singleton.

3. Synchronize Game Elements
Connect game objects to the Conductor's signals to trigger timed actions.

Example: Character Jump on Beat

gdscript

209

extends CharacterBody2D

func _ready():
Conductor.connect("beat", _on_beat)

func _on_beat(beat_count):
if beat_count % 2 == 0: # Jump every 2 beats
velocity.y = -500
jump_animation.play()
Example: Enemy Attack on Measure

gdscript
extends Node2D

func _ready():
Conductor.connect("measure”, _on_measure)

func _on_measure(measure_count):
if measure_count % 2 == 0: # Attack every 2 measures
start_attack_pattern()
4. Calibration & Testing
Offset Calibration:

Adjust offset in the Conductor until actions align perfectly with beats.

Use a debug label to show beat numbers:

gdscript
func _on_beat(beat_count):

$DebuglLabel.text = "BEAT: %d" % beat_count
Visual Beat Indicator (Optional):

Create a Ul element that flashes on beat:

gdscript

func _on_beat(_beat):
$BeatIndicator.modulate = Color.RED
await get_tree().create_timer(0.05).timeout
$BeatlIndicator.modulate = Color.WHITE

5. Advanced Techniques

210

Sub-Beats: Divide beats for 8th/16th notes:

gdscript

var sub_beats = 4 # Quarter notes per beat

var current_sub_beat = int(floor(song_position / (sec_per_beat / sub_beats)))
Dynamic BPM: Modify bpm/sec_per_beat during runtime for tempo changes.

Input Timing Windows:

gdscript
func _input(event):
if event.is_action_pressed("action"):
var time_since_beat = fmod(song_position, sec_per_beat)
if time_since_beat < 0.1: # 100ms window
perfect_hit()

Troubleshooting Tips
Audio Latency: Test on target devices; adjust offset per platform.

Missed First Beat: Start music slightly delayed using a Timer.
Drift Issues: Use AudioStreamPlayer (not AudioStreamPlayer2D/3D).

This setup creates a robust rhythm synchronization system. Adjust BPM, offset, and
signal connections to match your game's requirements!

21

	Table of Contents
	List of Tables
	Table 10.1 Overall Project Itemized Bill of Materials .143

	List of Figures
	Figure 2.12 Software Block Diagram of Gameplay, Menu, and Chart Creator20
	1. Executive Summary
	2. Project Description
	2.1 Motivation and Background
	2.2 Existing Product/Past Project/Prior Related Work
	2.2.1 Dance Dance Revolution
	2.2.2 Pump It Up
	2.2.3 Dance Around
	2.2.4 Dancerush Stardom
	2.2.5 StepManiaX
	2.2.6 Microsoft Kinect
	2.2.7 Just Dance
	2.2.8 Pokemon Go
	2.2.9 Mediapipe
	2.2.10 Chunithm

	2.3 Project Goals
	2.3.1 Hardware Goals
	2.3.2 Software Goals

	2.4 Project Objectives
	2.4.1 Prototype illustration/Blueprint

	2.5 Project Features and Functionalities
	2.5.1 Style Score and Pose-Based Evaluation System

	
	2.6 Requirements and Specifications
	2.6.1 Parts Specification Requirements Table
	​2.6.2 Notes on Specifications

	2.7 Hardware Block Diagram
	2.8 Software Block Diagram
	
	Figure 2.12 Software Block Diagram of Gameplay, Menu, and Chart Creator
	2.9 House of Quality

	3. Research
	3.1 Embedded Systems
	3.1.1 MCU vs SBC
	3.1.2 MCU is the Better Option… But Why?
	​3.1.3 Arduino
	
	3.1.4 Teensy
	3.1.5 Raspberry Pi Pico (RP2040)
	3.1.6 ESP32
	3.1.7 STM32
	3.1.8 MCU Selection

	3.2 Dance Pad Sensor
	3.2.1 Force Sensing Resistors
	3.2.2 Load Cells
	3.2.3 Strain Gauges (Raw)
	3.2.4 Piezoelectric Sensors
	3.2.5 Break Beam Sensors
	3.2.6 Dance Pad Sensor Selection
	3.2.7 Force Sensing Resistor Selection

	
	3.3 Communication Protocols
	3.3.1 External Communication Protocols
	3.3.2 Internal Communication Protocols
	3.3.2.1 UART (Universal Asynchronous Receiver-Transmitter)
	3.3.2.2 Inter-Integrated Circuit (I2C)
	3.3.2.3 Serial Peripheral Interface (SPI)

	3.3.3 Comparison and Final Selection

	3.4 Analysis of 12V Power Supplies for Embedded Systems
	3.4.1 The Critical Role of the Power Supply
	3.4.2 Project Power Requirements
	3.4.3 Power Supply Technologies
	3.4.4 Switch-Mode Power Supply (SMPS) Technology
	3.4.5 Comparison and Selection
	3.4.6 Conclusion and Implementation

	3.5 Analysis of LED Driver Technologies for High-Power Illumination
	3.5.1 Introduction to LED Drivers
	3.5.2 Fundamentals of LED Operation and Dimming
	3.5.3 Comparison of LED Driver Circuit Topologies
	3.5.4 Dedicated Switching (Buck) LED Driver IC
	3.5.5 Comparison and Selection

	3.6 Imaging Subsystem
	3.6.1 Monochrome vs RGB Sensor
	3.6.2 Camera Comparison
	3.6.3 Lens Comparison

	3.7 LED illumination Technology
	3.7.1 LED Part Comparison

	3.8 Embedded System Development Languages​
	3.8.1 C
	3.8.2 Python
	3.8.3 Java
	3.8.4 Embedded System Development Languages Selection

	3.9 Computer Vision
	3.9.1 Pose Estimation Techniques
	3.9.1.1 Classical Techniques

	3.9.2 Modern Techniques
	3.9.3 Computer Vision Library Selection
	3.9.4 Prototyping with MediaPipe and OpenCV
	3.9.5 Considerations for Embedded Systems
	3.9.5.1 Hardware Capabilities of the Jetson Nano
	3.9.5.2 Software Stack and Runtime Optimization
	3.9.5.3 Thermal and Power Management Constraints
	3.9.5.4 Game Engine Integration and Resource Synchronization
	3.9.5.5 Memory Footprint and Latency Targets
	3.9.5.6 Summary and Design Tradeoffs

	3.9.6 Programming Languages for Game and Computer Vision
	3.9.6.1 Evaluation Criteria
	3.9.6.2 Latency
	3.9.6.3 Accuracy
	3.9.6.4 Robustness
	3.9.6.5 Integration with the Game Engine

	3.10 Game Engines
	3.10.1 Godot
	3.10.2 Unity
	3.10.3 Unreal Engine
	3.10.4 Version Control
	3.10.4.1 Github
	3.10.4.2 Perforce
	3.10.4.3 Unity Version Control
	3.10.4.4 Unreal Engine Version Control

	3.10.5 Game Engines Comparison
	3.10.6 Version Control Comparison

	4. Standards and Design Constraints
	4.1 IEC 62471 - Photobiological Safety
	4.2 ISO 9241-210 - Ergonomics of human-system interaction
	
	4.3 IEC 60598 Luminaires
	4.4 Optical Design Constraints
	4.5 Design Trade-off: Full Coverage vs. Low Distortion
	4.5.1 FOV Lens comparison
	4.5.2 Distortion Impact on AI Performance

	5. Comparison of AI Engines
	5.1 Case Studies
	5.2 ChatGPT
	5.3 Google Gemini
	5.4 Microsoft Copilot
	5.5 DeepSeek
	5.6 Conclusion

	6. Hardware Design
	6.1 Dance Pad Master Controller Board
	6.2 Power Hub Board
	6.3 Input Tiles Board (x9)
	6.4 System-Level Hardware Integration
	6.4.1 Power Distribution and Regulation
	6.4.2 Control and Data Flow
	6.4.3 Vision System Illumination Control

	6.5 Optical Imaging System Design
	6.6 Illumination System Design
	6.7 Optical System Testing and Verification

	7. Software Design
	7.1 Input/Output
	
	7.2 State
	7.3 Event Handling
	7.4 Pose Handling

	8. System Fabrication
	8.1 PCB Layout Strategy
	8.2 Master Control Board Layout
	8.3 Power Hub Board Layout
	8.4 Input Tile(s) Layout

	9. System Testing and Evaluation
	9.1 Prototype Construction
	9.2 Hardware and Software Testing
	9.3 Performance Evaluation
	9.3.1 Hardware
	9.3.2 Software

	9.4 Optoelectronics Feasibility Study and Testing
	9.4.1 Design Requirements and Specifications
	9.4.2 Optical System Design
	9.4.3 Illumination System design
	9.4.4 Optical Illumination System Testing and Verification
	9.4.5 Qualitative Distortion Assessment
	9.4.6 IR Sensitivity Verification

	9.5 Overall Integration
	9.5.1 Hardware
	9.5.2 Optical and Illumination Systems
	9.5.3 Software

	9.6 Plan for SD2
	9.6.1 Hardware
	9.6.2 Optical and Illumination Subsystems
	9.6.3 Gameplay system

	10. Administrative Content
	10.1 Budget​
	10.2 Bill of Materials
	
	Table 10.1 Overall Project Itemized Bill of Materials
	10.3 Distribution of Worktable
	
	10.4 Project Milestones for SD1 and SD2
	10.4.1 Project Milestones for SD1
	10.4.2 Project Milestones for SD2
	​​
	10.4.3 Development Roadmap

	11. Conclusion
	Appendices
	Appendix A - references
	Appendix B - ChatGPT prompts and outcomes
	ChatGPT said:

	🎮 Best Way: Use a Game Engine
	Top Beginner-Friendly Game Engines:
	1. Unity (with C#)
	2. Godot (with GDScript or C#)
	3. Scratch (for absolute beginners or younger users)

	🎵 What a Rhythm Game Needs
	🧑‍💻 Alternative (but harder) Routes
	1. Custom Code with Pygame (Python)
	2. Web-based Rhythm Game

	✅ Recommendation
	✅ Core Requirements:
	💡 Recommended MCU Options:
	🔷 Teensy 4.0 or 4.1
	🔷 STM32F103C8T6 (Blue Pill)
	🔷 Arduino Leonardo / Micro
	🔷 Raspberry Pi Pico

	⚡ LED Driver Options
	🎮 USB HID vs Serial
	🔧 Final Recommendation
	🔹 1. Mechanical Switch-Based Sensors (Arcade Standard)
	🟢 Best for: Arcade-grade dance pads (like DDR, ITG)

	🔹 2. Foil Contact Sensors
	🟡 Best for: DIY dance pads on a budget

	🔹 3. Force-Sensitive Resistors (FSRs)
	🟡 Best for: Intermediate DIY pads

	🔹 4. Capacitive Touch or IR Proximity (Rare)
	🔴 Not recommended for dance pads

	✅ Recommendation Summary
	🧠 Recommended MCUs
	🔌 LED Driver Compatibility
	🕹️ Dance Pad Input
	🖥️ PC Integration
	🥇 Top Sensor Types for Dance Pads
	1. Conductive Plate Sensors (Arcade Style)
	2. FSR (Force Sensitive Resistor) Sensors
	3. Chinese Arcade Sensors (AliExpress)
	4. 3D Printed Spring Sensors

	🛠️ Recommended for DIY Builders

	Why Game Engines are Best for Beginners
	Recommended Game Engines for Rhythm Games (Beginner-Friendly)

	Key Considerations for Rhythm Game Development
	Alternatives to Game Engines
	1. Force-Sensing Resistors (FSRs)
	2. Arcade Sensors (Rubber Contact Sensors with L-Brackets)
	3. Contact Sensors (DIY Metal Plates/Foil)
	Less Common/Emerging Options:
	Recommendation:
	🎵 Step-by-Step: Basic Beat Synchronization System in Godot
	1. Choose or Load a Music Track
	2. Determine BPM (Beats Per Minute)
	3. Create a Beat Timer
	4. Define the _on_beat() Callback
	5. (Optional) Improve Accuracy with AudioServer Time
	6. Handling Player Input Timing (For Rhythm Games)

	🧰 Bonus Tips

	Core Concepts for Rhythm Synchronization
	Implementation Strategies in Godot
	1. Using AudioStreamPlayer.get_playback_position() and Latency Compensation
	2. Building a "Conductor" Node
	3. Using the RhythmNotifier Addon
	4. Charting System (for complex rhythm games)

	Key Considerations for Precision

