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1. Executive Summary  
The landscape of arcade rhythm games has traditionally focused on a singular metric of 
success: timing accuracy. This paradigm often overlooks a key element of dance: 
expressive performance. The Style Tracking Expressive Pad System (STEPS) project 
was conceived to address this gap by creating a new generation of dance games that 
rewards both precision and creativity. This project delivers a fully integrated arcade-style 
system, from custom hardware to a specialized game engine, centered around an 
innovative computer vision system that quantitatively scores a player's stylistic 
movement. 

The core of the STEPS project is a custom 9-panel dance pad that merges the 
gameplay styles of iconic rhythm games into a unique, hybrid experience. To meet the 
demanding requirements for reliability and complexity, a sophisticated modular 
hardware architecture was developed. This distributed system is composed of three 
distinct custom Printed Circuit Boards (PCBs): a central Master Controller, a 
high-current Power Hub, and nine identical "smart" Tile Boards. Each tile is an 
independent, microcontroller-driven module responsible for its own sensor reading and 
aesthetic LED feedback, all communicating with the Master Controller over a robust I2C 
bus. This advanced, modular design creates a scalable and easily maintainable 
hardware platform. 

The primary innovation of the STEPS project is its real-time, vision-based "Style Score" 
system. This system utilizes a camera and an 850nm infrared (IR) LED illumination ring, 
driven by a custom constant-current driver, to ensure reliable player tracking in any 
lighting condition. Using the MediaPipe pose estimation framework, the system 
analyzes the player's full-body movements and detects when they successfully execute 
predefined, expressive poses during gameplay. This adds a new dimension to the 
genre, encouraging players to engage in dynamic, full-body performance rather than 
just minimalistic, efficient footwork. 

The successful integration of these three pillars: custom modular hardware, a tailored 
software game engine, and a real-time computer vision system, represents a significant 
engineering achievement. The STEPS project successfully pushes the boundaries of 
interactive entertainment, delivering a proof-of-concept for a new style of rhythm game 
that is more engaging, physically expressive, and technically advanced than its 
predecessors. The final prototype is a testament our team's multidisciplinary skills in 
embedded systems design, power electronics, software development, and optical 
engineering, laying the groundwork for a potential commercial product for both arcade 
and home use 

1 



 

2.  Project Description 
2.1 Motivation and Background 
In recent years, rhythm games have surged in popularity among both casual and 
competitive gamers. Titles like Dance Dance Revolution (DDR), Pump It Up (PIU), and 
StepManiaX offer not only fast-paced gameplay but also unique forms of physical 
interaction that make them stand out from traditional video games. For readers 
unfamiliar with rhythm games: players typically choose a song, and as the music plays, 
visual cues (usually arrows) scroll on the screen toward a target zone. Players must 
step on corresponding arrows on the dance pad in time with the music. Successful 
timing earns points, while misses break combos and reduce scores. In the games 
aforementioned, players are often using their feet to step on panels that are labeled with 
directional arrows. In DDR it is with the up down left right arrows, StepManiaX has the 
same but with an additional center arrow, and Pump it Up has diagonal arrows instead 
of the 4 up down left right arrows with the center note as well. 

 
 

Figure 2.1 StepManiax on UCF at Knightros 
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As lifelong fans of rhythm games, we’ve always aspired to create a game that blends 
the fast-paced footwork of DDR and PIU with innovative mechanics that reward not only 
timing accuracy but also expressive performance. This passion became the foundation 
for our senior design project: a custom-built rhythm arcade machine that reimagines the 
traditional dance pad format. Our system features a unique 9-panel layout, combining 
the four cardinal directions, four diagonals, and a center panel. This effectively merges 
the core mechanics of DDR and PIU into a new hybrid experience. 

To take it a step further, we are integrating a computer vision system capable of 
analyzing player movement during gameplay. This system detects whether the player 
completes the charts with minimal effort or performs dynamic, stylish movements such 
as spins or arm gestures. Players who demonstrate expressive flair are rewarded 
through a secondary metric we call the Style Score, adding a new dimension to 
gameplay that celebrates both precision and creativity. 

Our team brings a diverse range of skills and experiences to the project. Our Computer 
Engineering majors contribute a strong passion for rhythm games, hands-on experience 
from developing a basic dance pad prototype in the past, and solid experience in 
hardware integration and software development. One of our teammates has a 
background in dance, offering valuable insight into expressive movement, physical 
design, and is also well-versed in PCB design. Another teammate serves as the 
president of the UCF Esports Club, providing a competitive gaming perspective that 
helps shape our gameplay mechanics and balance. Our team is rounded out by a 
Photonics Science and Engineering student who brings specialized expertise in optics 
for our computer vision system, and an Electrical Engineering student who serves as 
our hardware lead. 

We believe this blend of technical, creative, and performance-oriented backgrounds 
makes our team uniquely positioned to create a rhythm game that is both entertaining 
and technically ambitious. By combining game development, embedded hardware, and 
real-time computer vision, we aim to push the boundaries of traditional rhythm games. 
Ultimately, we envision this system not just as a school project, but as a potential 
commercial product suitable for both arcade and home use. Overall, our project is a 
tribute to the genre we love and an innovative leap forward in how rhythm games are 
played. 

 
2.2 Existing Product/Past Project/Prior Related Work 

2.2.1 Dance Dance Revolution 

Dance Dance Revolution (DDR), developed by Konami in 1998, is one of the most 
iconic rhythm games in the world. Players step on a 4-panel dance pad — with up, 
down, left, and right directional arrows — in time with scrolling on-screen cues 
synchronized to music. DDR is widely recognized for its role in popularizing rhythm 
games globally and has been featured in both arcade and home console formats. It 
uses pressure-sensitive panels and a scoring system based on timing accuracy, 
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rewarding "Perfect," "Great," or "Miss" for each input. However, the game focuses 
purely on foot-based precision and lacks a scoring component for stylistic or expressive 
movement. Players who still choose to complete charts with style are called “free 
stylers” and are highly respected in the community for completing easy to mid level 
charts with very hard expressive and complicated movement. This movement can range 
anywhere from spinning, to swaying the arms, to handstands and break dancing.  
 

2.2.2 Pump It Up 

Pump It Up (PIU), developed by Andamiro in 1999, is a 5-panel dance rhythm game 
that includes four diagonally placed panels and a center panel. PIU emphasizes 
freestyle movement more than DDR and is especially popular in South Korea. While 
PIU retains the same timing-based scoring mechanics as DDR, it introduces more 
physically varied and complex choreography due to its diagonal input layout. 
Nonetheless, PIU still lacks any integrated camera system or style-based scoring . Just 
like DDR, PIU has the same respected players who complete charts with freestyling 
despite still not being rewarded for doing so in game.  
 

2.2.3 Dance Around 

Dance Around is a rhythm game similar to Dance Dance Revolution but instead of using 
pressure-sensitive dance pads, it relies solely on a camera-based motion tracking 
system. This is done by using VisionPose to generate a 3D model of the player’s body 
and assessing their dance performance based on their ability to match the poses given 
and their own expressive movements[2]. During the game, players are prompted to 
mimic target poses displayed on the monitor, with visual cues that indicate the proper 
hand or foot placement. However, customer feedback has highlighted several limitations 
of this system. Customers have stated that the game has consitently misevaluated  full 
body movements and is only capable of   capturing the hand and foot positions of the 
players reliably[3]. Additionally, customers have noted that the calibration process could 
be overly lengthy, which detracts from the ease of use. 
 

2.2.4 Dancerush Stardom 

Developed by Konami, DANCERUSH STARDOM is a freestyle rhythm dance game that 
eliminates the traditional dance pad structure in favor of a large pressure-sensitive 
surface. The game uses a camera system to provide feedback and record gameplay, 
but the scoring is still based on foot movement across a large flat pad with visual 
indicators for steps and slides. The game promotes freestyle dancing, including spins 
and slides, and is considered more modern and expressive than DDR. However, like 
Dance Around, it does not feature a true pose recognition or performance grading 
system. Flair and dance expression are encouraged but not quantitatively rewarded 
within the game mechanics. 
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2.2.5 StepManiaX 

StepManiaX is a rhythm game inspired by DDR and PIU and developed by the creators 
of StepMania. It uses a 5-panel pad layout with center, up, down, left, and right panels, 
and is designed for high durability and fitness applications. StepManiaX includes a 
touchscreen interface and modernized music selection UI, with content designed to be 
accessible for both casual and serious players. While it modernizes the user experience 
and supports a wide range of difficulty levels, it retains the traditional scoring focus on 
timing accuracy. There is no implementation of camera-based tracking or any scoring 
system that rewards visual expression or dance style beyond note timing. 
 

 
 

Figure 2.2 Illustration prototype of StepManiaX, a 5 panel Dance Rhythm Game Arcade 
Cabinet[6] 

2.2.6 Microsoft Kinect 

Computer vision (CV) technologies have seen increasing integration into modern 
games, from facial detection and hand tracking to body motion recognition. These 
advancements have allowed developers to create more immersive and interactive 
gaming experiences by enabling players to interact with virtual worlds using natural 
body movements rather than traditional input devices.  

The Microsoft Kinect, released in 2010 for the Xbox 360, represented a major leap 
forward. Utilizing an infrared depth sensor and RGB camera, the Kinect could track 
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full-body skeletons in real-time using a technique called skeleton tracking, which 
mapped 20 joints of the player’s body. This enabled games like Kinect Adventures and 
Dance Central to support full-body gameplay without the need for controllers. The 
Kinect SDK and the associated machine learning models enabled gesture detection and 
activity recognition, expanding the use of CV beyond entertainment into healthcare, 
education, and robotics. However, challenges such as latency, lighting interference, and 
limited tracking accuracy in multi-person scenes persisted. 

While the Kinect was not utilizing conventional Computer Vision techniques and opted 
for IR sensing, it was able to prove very effective for the time allowing less powerful 
hardware like the xbox to perform simple calculations. By analyzing distortions in an 
infrared dot pattern, Kinect could calculate depth and track motion without any physical 
markers. 

To make skeletal tracking accessible to developers, Microsoft released the Kinect SDK, 
enabling applications to extract joint data and recognize poses. A foundational feature 
of this SDK was its ability to detect up to 20 distinct skeletal joints, as visualized in 
Figure 2.3. These include major points such as the head, spine, hips, shoulders, and 
limbs. This allowed developers to build gesture-based interfaces, games, and virtual 
assistants capable of interpreting full-body movement. 

 

Figure 2.3 Joint layout used by Microsoft Kinect's skeletal tracking system 

6 



 

Kinect’s architecture proved revolutionary for its time. The use of the various hardware 
shown in Figure 2.3 such as the IR Emitter, Color Sensor, IR Depth Sensor, and Tilt 
Motor allowed the Kinect to capture accurate per-pixel values along with depth 
measurements even in low light shown in 3.3.2.C. These technologies were critical in 
early gesture-based games like Dance Central and inspired later research in 
human-computer interaction. 

 

 

Figure 2.4 Kinect Architecture 

 

Figure 2.5 3D Depth Image in Grayscale 
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Microsoft also provided developer tools like Kinect Studio, which recorded and replayed 
interaction data to aid debugging and testing. Applications could be built rapidly in WPF 
using templates like KinectSeletonApplication which visualized tracked joints as ellipses 
on a canvas. The Kinect SDK also introduced features like seated mode, facial tracking, 
and support for close-range users via Near mode, allowing for more flexibility in design. 

Kinect's legacy lives on in modern computer vision applications. Its model of joint-based 
tracking and use of multimodal input (pose + voice) laid the groundwork for today’s 
AI-powered body tracking with neural networks and webcams. While contemporary 
systems like MediaPipe Pose and OpenPose no longer require specialized hardware, 
the principles they followed, path estimation, joint modeling, and user-centric design, 
remain deeply rooted in Kinect's innovations. 

2.2.7 Just Dance 

Another notable application of CV in gaming is Just Dance, a franchise by Ubisoft 
launched in 2009. Originally designed for the Nintendo Wii using motion controllers, 
newer iterations supported Kinect and PlayStation Camera input. Just Dance evaluates 
player movements by comparing their captured silhouette or skeleton data to 
pre-recorded dance routines. While this system simplifies feedback into generalized 
“good” or “perfect” scores, it creates an accessible experience that emphasizes fun over 
precision. This trade-off reflects a key challenge in CV-based gameplay: achieving a 
balance between technical accuracy and player enjoyment. 

2.2.8 Pokemon Go 

In recent years, computer vision has enabled augmented reality (AR) games such as 
Pokémon GO, which use smartphone cameras and visual SLAM (simultaneous 
localization and mapping) to blend virtual content with the real world. Although AR relies 
more heavily on scene understanding than pose detection, these games showcase how 
CV can extend interactivity beyond fixed hardware setups. 

2.2.9 Mediapipe 

More recently, open-source tools like MediaPipe have democratized access to pose 
estimation algorithms that were once exclusive to large tech companies. With these 
libraries, developers can extract real-time body, hand, and facial landmarks using only a 
standard webcam. This has fueled a resurgence in indie games and research projects 
that explore motion-based gameplay and accessibility.  

2.2.10 Chunithm 

Similarly, Chunithm, a rhythm game by Sega, relies on advanced hand-tracking through 
infrared or camera-based systems to detect fast, complex gestures like air slashes or 
upward swipes. While not all the technical details of these proprietary systems are 
public, they demonstrate how CV, including neural network-based recognition and 3D 
hand pose estimation, has become viable even in high-speed arcade settings. 
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2.3 Project Goals 
 
The main goal of this project is to design and build a self-contained arcade-style rhythm 
game system that includes both the physical dance pad hardware and the video game 
software. The system will feature a 9-panel layout to allow for expanded gameplay 
mechanics. In addition to foot-based input, the game will include a computer vision 
system that evaluates the player’s expressive movement using a live camera feed. Our 
goal is to create an experience that rewards both precision and performance, allowing 
players to interact with the game through both steps and body movements. The final 
product will include a working rhythm game engine, a functioning pad-to-PC interface, 
custom chart creation tools, and vision-based style scoring. While the game will initially 
run on a standard PC or laptop, we are also exploring the feasibility of deploying the full 
system on an embedded platform such as the NVIDIA Jetson Nano. This would allow 
for a compact, standalone arcade unit, and is being considered as a stretch goal 
pending performance testing and thermal optimization. 

2.3.1 Hardware Goals 

●​ Basic:  
-​ develop 9-direction interactive arrow pads with RGB LED feedback for 

each direction by the end of SD1 
-​ ensure responsive and accurate force detection using force-sensing 

resistors (FSRs) with an input response time of 5-10 ms  
-​ design and integrate a  3-4 mm  aspherical lens that maximizes image 

sharpness (≥ 3 pixels/mm) across a 2.9 m x 2.9 m field of view while 
taking the depth of field (DOF) into account. 

-​ implement a synchronized time-multiplexed near-infrared (NIR) LED 
illumination system with ≤17 ms full-zone cycle to reduce power usage 
and prevent flicker.​
 

●​ Advanced:  
-​ reduce total PCB computational processing time by at least 30% 

compared to SD1 prototype using firmware optimizations. 
-​ re-design pad layout to reduce total surface area by at least 15% 

compared to the SD1 prototype, by SD2 midterm demo, to enhance 
portability without sacrificing gameplay accuracy 

-​ select and implement LED beam angles and placement configurations  
that achieve ≥85% measured brightness uniformity with minimal 
shadowing across all four zones during optical subsystem testing in SD2. ​
 

●​ Stretch:  
-​ integrate Bluetooth or Wi-Fi module to enable wireless data transmission 

between pads and central controller 
-​ create a foldable dance pad prototype with < 3cm thickness when 

collapsed, suitable for storage or transport 
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-​ reduce input latency to 1-5 ms through optimized ADC sampling and FSR 
circuit tuning. 

-​ run the entire software stack on an NVIDIA Jetson Nano, including vision, 
scoring, and display modules​
 

2.3.2 Software Goals 

●​ Basic: 
-​ develop a rhythm game engine tailored to the 9-panel pad layout with 

frame rates ≥ 60 FPS 
-​ implement a user interface for local song selection and post-game 

performance feedback 
-​ run MediaPipe-based pose estimation locally on the system (e.g., Jetson 

nano or PC) 
-​  Implement pose-based scoring by triggering bonus effects for matching 

target poses during gameplay ​
 

●​ Advanced:  
-​ include a song editor feature that allow users to generate custom 

choreography charts 
-​ load a library of at least 6 preloaded songs at launch for player testing 
-​ improve pose detection robustness with optimized frame filtering and 

landmark smoothing (e.g., 95% detection confidence)​
 

●​ Stretch:  
-​ add player login with global leaderboard integration via secure backend 
-​ launch a mobile app that syncs gameplay statistics, average scores, and 

playtime 
-​ add configurable startup modes (Arcade/Home) with different default UI 

settings and gameplay speeds​
 

2.4 Project Objectives 
To guide the development of the STEPS system, we have defined a set of core 
objectives that encompass the design, fabrication, and integration of the project's 
primary hardware and software subsystems. 

●​ Hardware Fabrication: ​
Construct a durable 9-panel dance pad using custom-designed Printed Circuit 
Boards (PCBs) and Force-Sensing Resistors (FSRs). The system will be 
engineered to achieve a low-latency input response time of less than 10ms and 
communicate with a host PC as a standard USB HID device. Each panel will be 
pressure-sensitive and capable of reliable input across a wide range of user 
weights and step patterns. Additional hardware considerations include robust 
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electrical connections, compact sensor mounting, and modularity to allow for 
maintenance or upgrades.​
 

●​ Game Engine Development:​
Build a complete rhythm game from the ground up in the Godot engine. This 
software will feature a user interface for song selection and score display, a 
system to load custom song charts, and immediate audio-visual feedback for 
player accuracy. The game will be designed to accommodate various skill levels 
and allow user-generated content to be imported easily. The engine will support 
real-time synchronization between the music, step inputs, and lighting cues to 
maximize immersion​
 

●​ Optical System Design: ​
Engineer an integrated imaging system for reliable player tracking in various 
ambient lighting conditions. This involves selecting an appropriate camera sensor 
and designing a custom aspherical lens system, supported by a time-multiplexed 
850nm infrared (NIR) LED illumination array. The optical design will focus on 
achieving consistent visibility of the player's body regardless of external lighting 
or room setup, ensuring that the pose estimation system operates with high 
fidelity in dynamic play environments.​
 

●​ Vision-Based Scoring: ​
Implement a real-time "Style Score" system using a pose estimation library like 
MediaPipe to extract a player's full-body keypoints. This system will detect a 
series of predefined expressive poses and award bonus points to reward player 
creativity beyond simple timing accuracy. The vision module will operate in 
tandem with the core game logic to ensure low-latency detection and minimize 
false positives. Future work will explore machine learning-based classification to 
expand the range of recognized poses and improve robustness.​
 

●​ Full System Integration: ​
Integrate all hardware and software components into a cohesive and functional 
prototype. This final objective involves verifying that the physical dance pad 
seamlessly controls the game engine and that the pose detection system 
provides accurate input to the scoring logic, delivering a stable and engaging 
user experience ready for demonstration. A core emphasis will be placed on 
minimizing system latency, ensuring modular connections between components, 
and supporting long-duration playtesting to evaluate durability and feedback 
performance. 
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2.4.1 Prototype illustration/Blueprint 

 
Figure 2.6 Electronic Blueprint Prototype Illustration 
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Figure 2.7 Dance Pad 3D Model 
 

 
 

     Figure 2.8 Conceptual Rendering of the S.T.E.P.S Gameplay Environment.  
A visual overview of the player-camera interaction and LED frame layout. The LEDs are 
shown as white for illustration purposes, but the final system uses 850nm NIR LEDs. 
This illustration is not to scale and is intended for conceptual understanding. 
 

13 



 

 

 
 

Figure 2.9  Schematic layout of the optical and illumination subsystems. The AR0234 
camera with a 3.2 mm lens captures a ~87.6° FOV across the 2.9 m × 2.9 m   tracking 
zone from 6 ft away. Surrounding 850 nm NIR LEDs illuminate the scene to support 
reliable pose detection. 
 
 
2.5 Project Features and Functionalities 
 

The primary goal of this project is to develop a working proof-of-concept for a new kind 
of dance rhythm game that integrates physical input with computer vision-based 
expression tracking. The focus is on delivering a functional and demonstrable system 
that includes three core components: a responsive 9-panel dance pad, a custom rhythm 
video game engine, and a vision system that scores player movement based on style 
and expressiveness. 

At the hardware level, the dance pad will use Force-Sensing Resistors (FSRs) beneath 
each panel to detect foot pressure and translate those inputs into digital signals via a 
microcontroller. The signals are interpreted as button presses in-game, allowing for 
responsive gameplay. Each panel will also include LED lighting to provide immediate 
visual feedback based on the game’s state and player interaction. While 
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commercial-grade materials like metal panels or acrylic overlays would be ideal, the 
immediate priority is to build a stable, functional pad using accessible prototyping 
materials to prove the input system works reliably. 

The software side features a rhythm game engine tailored to the 9-direction input 
system. Players will step on directional pads in sync with music, guided by scrolling 
notes on screen. The game will evaluate the player’s timing accuracy and display 
scores at the end of each round. Alongside traditional gameplay scoring, a connected 
camera system will assess the player’s full-body movement using a pose detection 
library. Based on the amplitude, variation, and expressiveness of the player’s dance, the 
game will generate a secondary “style score.” This adds a creative and engaging layer 
of performance evaluation beyond pure timing. 

A basic user interface will allow for song selection, score displays, and navigation 
through the system. A chart editor tool will also be included, enabling users to import 
music and design their own charts either manually or with the help of automatic 
generation tools. 

Although not essential to the proof-of-concept, we also envision the long-term possibility 
of turning the system into a self-contained arcade-style unit. Features like a cabinet 
enclosure, co-op integration, player logins, and online leaderboards are considered 
stretch goals that could be implemented later with more resources. The project is 
designed with scalability in mind: the core technology should work independently, while 
leaving room for future upgrades to polish and deploy the system as a full commercial 
or open-source product. 

2.5.1 Style Score and Pose-Based Evaluation System 

 
In addition to the traditional timing-based score system, our game introduces a novel 
secondary metric known as the Style Score, which rewards players for striking 
expressive and clearly defined poses at designated times during gameplay. Unlike 
freeform dance scoring, our system focuses on detecting static full-body poses that can 
be consistently recognized by a pose estimation algorithm. 

We intentionally limit the scope of detection to distinct, predefined poses that can be 
reliably tracked in real-time using a single camera. This approach improves detection 
accuracy and reduces computational load while still encouraging expressive movement. 

During gameplay, specific pose prompts will appear, similar to freestyle moments or 
bonus sections. These pose prompts will be displayed in a small icon area on screen 
during designated freestyle sections, giving players 2–3 seconds to match the target 
pose. If the player strikes the correct pose at the right time, they are awarded bonus 
points to their Style Score. This incentivizes physical creativity and rewards players who 
engage more fully with the visual performance aspect of rhythm games. 
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Each pose is chosen based on ease of detection, body separation, and iconic visual 
silhouette (all poses are mirrored when displayed to the player): 

●​ Muscle Man Pose: Both arms raised as if you’re flexing biceps’ 
●​ What? Pose: Both arms out as if you don’t know about something  
●​ Point Up Pose: Left arm behind the head, pointing out to a plane 
●​ Tough Guy Pose: Crossed arms 
●​ Samurai Pose : Legs wide apart, one hand near waist as if gripping a katana, 

other arm pointing forward or out. 
●​ Mantis Pose: Right arm raised in front of the chest, left bent above the head, 

and right leg up with knee up 

Each pose will have keypoint thresholds that define acceptable angles and positions  
such as a certain limb being within a range of 20 degrees from the desired state. This 
will be validated using a pre-trained MediaPipe/OpenPose[5] model. 

 
Muscle Man Pose 

 
What? Pose 

 
Point Up Pose 

 
Tough Guy Pose 

 
Samurai Pose 

 
Mantis Pose 

Figure 2.10 Images of the tentative poses (modeled using PoseMy.Art) 
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2.6 Requirements and Specifications 

2.6.1 Parts Specification Requirements Table 

 
Table 2.1 List of all of the project’s engineering requirements and specifications. 
Highlighted in yellow are specifications that will be demonstrated 
 
Parameter Value 

Overall System 

Active power consumption ~45 W 

Lighting response time ~5-10 ms 

Pose identification accuracy ≥ 95% detection accuracy for body/limb motion 

Input response time ~5-10 ms 

Dance Pad 

Size ~34.5 x 34.5 x 2.5 in 

Weight ≤ 30 lbs 

Cost ≤ $300 

Printed Circuit Boards (PCB) 

Size ≤ 10 cm2 

Display 

Frame rate ≥ 60 fps 

Resolution ≥ 1280 x 720 pixels 

Refresh rate ≥ 120 Hz 

Dance Pad Panels 

Size ~10 in2 

FSRs input response time  ~5-10 ms 

FSRs force range input 0-100 N 

RGB LEDs PWM duty cycle ~10%-30% 
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Camera Module 

Full-body coverage area ≥ 2.9 m field width at 1.83 m distance, ensures 
full-body coverage with no tracking cutoff 

Power Supply Unit 

Input voltage from wall power via 
AC-DC converter 

≥ 12 V 

Output power ≥ 60W (≥ 5A @ 12V) 

LED Panel 

illumination uniformity of the player ≥ 90% uniformity across player body, achieved 
by supplemental 850 nm illumination regardless 
of ambient light 

Player visibility (shadow coverage) Full Body at 1m 

​
2.6.2 Notes on Specifications 

Overall System 
For active power consumption, most typical dance arcade machines are around 
100-200 watts, so for our system we aim to have set our limit to 200 watts. 
​
Dance Pad 
For increased portability and potentially affordability and maintenance, a size of about 
34.5 x 34.5 x 2.5 inches and weight of at most 30 lbs would be optimal for the player 
and owner of the pad.  
 
Printed Circuit Board (PCB)  
As mentioned before in goals, we want to minimize the size of the PCB as much as we 
can while also making it easy enough to check for errors on the design. 
 
Display 
Whether it be a PC or game system, the system requirements are the same. In order to 
run our custom made game, the system must be able to run at least 60 frames per 
second, have a resolution of at least 1280 * 720 pixels, and have a refresh rate of at 
least 120 Hz.  
 
Dance Pad Panel 
Response time from the FSRs must be almost instantaneous and this is very important 
because rhythm games are dependent on timing of when commands are hit. There 
should be little to no latency when pressing the pads and triggering the FSRs. 
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Moreover, the amount of force applied needed to trigger the FSRs must be 0-100 N so 
that even the smallest amount of pressure should be enough to send a signal back to 
the MCU.  
 
Camera Module 
To meet ≥95% tracking accuracy and full-body coverage, the camera must maintain 
sufficient resolution, wide FOV ( ≥ 400 mm at 1m), and minimal distortion. This ensures 
consistent player visibility without cutoff or blind spots. 
 
Power Supply Unit 
The pad is powered through a wall power cable which should be more than sufficient 
enough to power the pad. The input voltage of at least 12 V is required to efficiently 
power the whole pad, and we aim to output a power of at least 1.65 watts.  
 
LED Panels 
To ensure the player is always fully illuminated regardless of body position or 
movement, the LED panels must maintain illumination uniformity of  ≥ 90% and deliver 
sufficient brightness to achieve  full body visibility at a 1-meter distance. 
 
2.7 Hardware Block Diagram 

  
 

Figure 2.11 Hardware Block Diagram showcasing work distribution and major 
components of the design 
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2.8 Software Block Diagram 

 
 

Figure 2.12 Software Block Diagram of Gameplay, Menu, and Chart Creator 
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2.9 House of Quality 

 
 

Figure 2.13 House of Quality 
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3. Research 
3.1 Embedded Systems 
 
To integrate embedded systems into our STEPS platform, we require a dedicated 
computing component. The two most suitable options are a microcontroller unit (MCU) 
or a single-board computer (SBC). Each has its strengths and tradeoffs, but only one is 
better suited to execute the functionality required for our project. 
 
SBCs offer significantly higher processing power than MCUs, making them capable of 
running full operating systems, graphical interfaces, and multitasking. However, the 
tradeoff is that they also consume more power, require more complex infrastructure, 
and lack real-time response by default. Meanwhile, MCUs are optimized for fast, 
real-time control, which is critical for rhythm game input responsiveness. They are also 
cheaper, easier to wire, and consume less power, making them ideal for precise button 
and LED control. Therefore, we take a deeper dive into both options to evaluate which 
is most optimal for our dance pad design. 
 

3.1.1 MCU vs SBC 

MCUs are designed for task-specific control, particularly those that require low latency 
and real-time response, such as reading sensor data or controlling actuators. In our 
system, for input detection, an MCU would allow for minimal system latency, which is a 
critical factor for timing accuracy in rhythm games. 
 
MCUs also offer faster boot-up times and simpler circuit integration, making them easier 
to debug and more reliable during development. Most MCUs include a large number of 
GPIO pins, many with PWM support, which makes them especially suitable for handling 
LEDs and button inputs with minimal delay. Their hardware simplicity aids in easier 
troubleshooting and faster hardware prototyping. However, MCUs typically require 
low-level programming (e.g., in C or C++) and are not capable of natively handling 
advanced UI, graphics, or audio features. As a result, we would require external 
modules if we were to implement these into our design. 
 
In terms of cost, most MCU chips cost under $10, making them ideal for scalable, 
low-cost embedded designs. If the board is damaged or needs revision, the low cost of 
replacement makes development more forgiving. 
 
In contrast, SBCs offer significantly higher processing power and are well-suited for 
applications involving graphical interfaces, audio, or wireless communication. They run 
full operating systems, typically Linux-based, and can be programmed using high-level 
languages like Python or Java, which simplifies software development. 
 
However, their non-deterministic response time, due to OS-level multitasking, makes 
them less reliable for real-time input detection. This could introduce latency or jitter in 
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detecting panel hits, affecting the gameplay experience. SBCs also have longer boot 
times, higher power consumption, and are generally more complex to integrate into 
custom PCB designs. On top of that, SBCs typically cost between $35–$60, which 
increases development risk if the board is damaged or requires replacement. 
 

3.1.2 MCU is the Better Option… But Why? 

While neither MCUs nor SBCs are perfect in every category, MCUs are the more 
optimal choice for our dance pad design due to their fast and predictable response 
times, lower power consumption, smaller footprint, and significantly lower cost. As 
shown in Table 3.1 below, the MCU excels in the areas most critical to our engineering 
and marketing goals, such as system responsiveness, efficiency, and affordability, as 
previously outlined in Figure 2.9 House of Quality. 
 
To meet cost targets, we must use components that are low-cost yet reliable, and MCUs 
typically cost under $10, making them ideal for both prototyping and scalable 
production. Power consumption is another key concern, especially since our system will 
run multiple FSRs and RGB LEDs simultaneously, and MCUs are optimized for energy 
efficiency, unlike SBCs which consume more power even when idle. Real-time 
performance is especially critical for a rhythm-based game, where millisecond-level 
delays can affect gameplay. MCUs provide immediate input handling and low-latency 
output control, which are difficult to achieve on SBCs running multitasking operating 
systems without extensive tuning. 
 
While SBCs may offer advantages like better multimedia processing or easier 
development with high-level languages, they introduce longer boot times, higher costs, 
and non-deterministic behavior, making them less suitable for a system where precision 
and timing matter most. MCUs, on the other hand, are straightforward to integrate, 
faster to initialize, and allow for fine-grained control over every component in the 
system. 
 
Overall, MCUs give us the performance and reliability needed for fast input detection, 
smooth LED animations, and efficient control, all while keeping costs, power, and 
complexity well within our project’s constraints. 
 
Table 3.1 Comparison table between MCUs and SBCs using their features 
 
Feature Microcontroller (MCU) Single Board Computer (SBC) 

Processing Power  ✓ 

Real-Time Response ✓  

Design Complexity ✓  
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Coding Complexity  ✓ 

Power Consumption ✓  

I/O Handling ✓  

UI Support  ✓ 

Boot Time ✓  

Cost ✓  

​
3.1.3 Arduino 

Arduino is a series of open-source microcontroller boards designed for ease of use in 
both hardware and software. They are especially popular in the prototyping and 
hobbyist community due to their beginner-friendly development environment (Arduino 
IDE), and extensive library support for I/O, sensors, LEDs, and communication 
protocols. Arduino boards typically use AVR-based microcontrollers, although some 
variants use ARM cores. In this section, we look at three of the most fitting boards for 
our dance pad design: Arduino Uno, Arduino Mega 2560, and Arduino Leonardo. 
 
One of Arduino’s most iconic boards is the Arduino Uno, which uses the 8-bit 
ATmega328P microcontroller. It runs at a clock speed of 16 MHz, with 32 KB of flash 
memory, 2 KB of SRAM, and 1 KB of EEPROM. The Uno includes 14 digital I/O pins (6 
with PWM support) and 6 analog inputs (ADC). It’s widely supported and extremely 
simple to program and wire, making it a go-to for prototyping. However, it lacks native 
USB HID support, which means it cannot act as a USB joystick or keyboard without 
external USB-serial bridging. For our dance pad, the Uno would fall short on both ADC 
and PWM channels unless additional multiplexing components were added.​
One of Arduino’s higher-end boards is the Arduino Mega 2560, which features the 
ATmega2560 microcontroller. Like the Uno, it runs at 16 MHz, but includes significantly 
more memory: 256 KB of flash, 8 KB of SRAM, and 4 KB of EEPROM. It provides 54 
GPIO pins, 15 PWM channels, 16 ADC channels, and 4 UART serial ports, making it 
highly capable of handling our dance pad’s inputs. The Mega does not support native 
USB HID, but its I/O abundance makes it ideal for wiring-heavy applications.​
​
Another one of Arduino’s boards is the Arduino Leonardo, which uses the ATmega32U4 
microcontroller. It also runs at 16 MHz, with 32 KB of flash memory, 2.5 KB of SRAM, 
and 1 KB of EEPROM. It provides 20 GPIO pins, 7 PWM channels, and 12 ADC 
channels. Its standout feature is native USB HID support, allowing it to behave like a 
USB keyboard or joystick, a feature perfect for our design. While it offers fewer I/O pins 
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than the Mega, it still covers our minimum requirements, and any shortfall can be 
handled using external components.  
 
Table 3.2 Arduino boards and their features comparison table 
 
Feature Arduino Uno Arduino Mega 2560 Arduino Leonardo 

Main MCU ATmega328P ATmega2560 ATmega32U4 

Clock Speed 16 MHz 16 MHz 16 MHz 

Flash Memory 32 KB 256 KB 32 KB 

SRAM 2 KB 8 KB 2.5 KB 

EEPROM 1 KB 4 KB 1 KB 

GPIO Pins 14 54 20 

PWM Channels 6 15 7 

ADC Inputs 6 16 12 

USB Communication serial-to-USB  serial-to-USB  native USB 

USB HID Support none none included 

Serial Ports (UART) 1 4 1 

Active Power 
Consumption 

Moderate Moderate-High Moderate 

MCU Chip Cost ~$3  ~$8 ~$4 
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3.1.4 Teensy 

Teensy is a powerful and compact microcontroller board series developed by PJRC. 
While slightly less common than Arduino in beginner projects, Teensy is widely used in 
performance-critical embedded systems due to its speed, USB capabilities, and 
real-time performance. Most Teensy boards use ARM Cortex-M cores, which were 
specifically designed for embedded applications to offer high energy efficiency and low 
cost. All Teensy boards also support native USB HID, making them excellent for 
applications that require low-latency input handling, such as rhythm games. In this 
section, we explore four Teensy models: Teensy 2.0, Teensy 3.2, Teensy LC (Low Cost), 
and Teensy 4.1.  
 
The oldest version of them all is the Teensy 2.0 (released in 2009). Out of our other 
Teensy options, Teensy 2.0 is the only one that doesn’t use an ARM core. Instead, 
much like the Arduino Leonardo, it uses an ATmega32U4 8-bit automatic voltage 
regulator (AVR). This means that the Teensy 2.0 has almost the same exact 
specifications as an Arduino Leonardo. For instance, both run at a clock of 16 MHz and 
include 32 KB of flash memory, 2.5 KB of SRAM, 12 ADC channels, and USB HID 
support. It provides 25 GPIO pins, which is slightly more than the Leonardo’s 20. 
Despite its age, Teensy 2.0 remains a lightweight and reliable choice for simple USB 
input devices. However, it lacks the processing power and memory needed for 
advanced LED animations or real-time multitasking. 
 
Released in 2014, the Teensy 3.2 offers a major leap in performance over the 2.0. It 
features an MK20DX256VLH7 MCU with a 72 MHz ARM Cortex-M4 processor, 
supporting both DSP instructions and hardware floating point. It includes 256 KB of 
flash memory, 64 KB of SRAM, and 34 GPIO pins. The Teensy 3.2 supports 21 analog 
inputs (ADC) and 12 PWM outputs, and unlike Teensy 2.0, the ADC is 13-bit (not 16-bit 
as sometimes misreported). It supports USB HID, has robust NeoPixel support 
(including DMA-based LED control), and is powerful enough to handle real-time step 
detection, LED animations, and game communication simultaneously. It offers an 
excellent balance between performance, GPIO availability, and price, making it a strong 
candidate for mid-level embedded designs like our design. 
 
Introduced in 2015, the Teensy LC is a budget-friendly alternative that still offers modern 
features. It uses the MKL26Z64VFT4 MCU, based on a 48 MHz ARM Cortex-M0+ 
processor. It comes with 62 KB of flash memory, 8 KB of SRAM, and 27 GPIO pins. It 
includes 13 analog inputs and 10 PWM outputs, and it supports USB HID. While not as 
fast as the 3.2, the Teensy LC still outperforms Teensy 2.0 in nearly all areas. It does 
not support DMA for NeoPixel LED control, meaning LED animations may add CPU 
overhead. Still, its low cost and decent GPIO make it a practical option if budget is a 
major constraint. 
 
The most powerful board in the series, Teensy 4.1, was released in 2020 and uses the 
MIMXRT1062 MCU with an ARM Cortex-M7 processor running at a blazing 600 MHz. It 
includes 1 MB of SRAM, 8 MB of QSPI flash memory, and supports external PSRAM or 
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flash via expansion pads. It features 55 GPIO pins, 18 analog inputs, and up to 35 PWM 
outputs, with USB High-Speed (480 Mbps) support and full native USB HID. Unlike 
Teensy 3.2 or LC, Teensy 4.1 also supports cache, branch prediction, and complex 
multitasking, making it ideal for fast input response, dynamic LED control, and 
interfacing with multiple peripherals simultaneously. While the ADC is only 12-bit and 
the analog pin count is slightly lower than Teensy 3.2, the vast processing power and 
memory make Teensy 4.1 a top-tier choice. 
 
 
Table 3.3 Teensy boards and their features comparison table 
 
Feature Teensy 2.0 Teensy 3.2 Teensy LC Teensy 4.1 

MCU Chip ATmega32U4 MK20DX256VLH7 MKL26Z64VFT4 MIMXRT1062  

Structure 8-bit AVR ARM Cortex-M4 ARM 
Cortex-M0+ 

ARM 
Cortex-M7 

Clock Speed 16 MHz 72 MHz 48 MHz 600 MHz 

Native USB 
Speed 

12 Mbps​
(full speed) 

12 Mbps​
(full speed) 

12 Mbps​
(full speed) 

480 Mbps​
(high speed) 

Flash 
Memory 

32 KB 256 KB 62 KB 8 MB 

SRAM 2.5 KB 64 KB 8 KB 1024 KB 

GPIO Pins 25 34 27 55 

PWM 
Channels 

7 12 10 35 

ADC Inputs 12 (12-bit) 21 (13-bit) 13 (12-bit) 18 (12-bit) 

Active Power 
Consumption 

Low Moderate Low High-Very High 

MCU Chip 
Cost 

~$4 ~$6-9 ~$2-4 ~$7-11 
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3.1.5 Raspberry Pi Pico (RP2040) 

Although there are multiple other Raspberry Pi series like Raspberry Pi 4 and 
Raspberry Pi Zero, they are not efficient enough to be considered for our design. Due to 
the fact that most other Raspberry Pi use Linux which can make them heavier on power 
and boot time, less reliable when it comes to real-time responses, harder to interface 
with timing-sensitive components, and more complex to integrate into our dance pad’s 
PCB. The series we want to look at, however, is the Raspberry Pi Pico series.  
 
The Raspberry Pi Pico is a microcontroller, not a general-purpose computer, that uses 
its own microcontroller chip, the RP2040. The RP2040 is a dual-core Cortex M0+ 
microcontroller chip that’s known for being affordable while having a high performance. 
Because the RP2040 is made of bare silicon, it comes with a QFN-56 package, which 
supports compact PCB design and high-speed operation, allowing it to have good 
thermal dissipation, short lead lengths for better signal integrity, and maintain a compact 
size for better use of space. However, having the QFN-56 package also makes 
soldering into the PCB board challenging if done by someone with little to no 
experience.  
 
The Raspberry Pi Pico runs at a clock speed of 133 MHz, making it well-suited for 
performance-intensive tasks. Much like the Teensy boards, Pico also supports USB 
HID, though it requires software implementation via libraries like the Pico SDK or 
CircuitPython, and no external components or converters are needed for HID 
communication. However, while the Pico provides 26 GPIO pins and 16 PWM channels, 
it includes only 3 12-bit ADC channels, which is insufficient to directly read analog 
signals from all 9 FSR-based pads. To support more analog inputs, external analog 
multiplexers or ADC chips would be needed. In terms of memory, the Pico offers 2 MB 
of flash and 264 KB of SRAM, which is significantly more than typical Arduino boards 
and even some Teensy models. Overall, Raspberry Pi Pico’s RP2040 is a highly 
affordable chip (~$1) capable of handling complex tasks at high speeds, while 
maintaining low to moderate active power consumption. However, using this chip will 
require external components, such as analog multiplexers for more ADC inputs, for our 
design to be fully functional.  

3.1.6 ESP32 

The ESP32 is a series of low-cost, low-power system-on-a-chips (SOCs). MCU chips 
used by ESP32 modules typically cost around $1-$3. What makes the ESP32 different 
from traditional microcontrollers like AVR or RP2040 is that most ESP32 modules have 
Wi-Fi and/or Bluetooth capabilities. In this section, we analyze and compare the ESP32 
(WROOM-32), ESP32-S2, ESP32-S3, and ESP32-C3.  
 
The ESP32-WROOM-32 is one of the earliest and most commonly used modules in the 
ESP32 series. It features a dual-core 32-bit Xtensa LX6 processor and supports both 
Wi-Fi and Bluetooth Classic + BLE. Despite being one of the older models, it can still 
run at up to 240 MHz, making it capable of handling performance-heavy tasks. It comes 
with 520 KB of SRAM and 4 MB of flash memory by default, though variants with 8 MB 
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or 16 MB of flash are also available. The chip provides up to 34 GPIO pins, 16 PWM 
channels, and 18 ADC channels, which is sufficient for our design. However, one major 
limitation is that it does not have native USB HID support without additional hardware. 
To use the WROOM-32 in a USB-connected setup, we would need to add an external 
USB-to-HID bridge chip or pair it with another microcontroller that supports USB HID 
natively. Therefore, unless we design the DDR pad to be fully wireless, it may be more 
practical to use another ESP32 variant that can support native USB HID directly. 
 
The ESP32-S2 improves on the WROOM-32, most notably, by adding native USB 
support. It features a single-core Xtensa LX7 processor that can run up to 240 MHz, 
and, by default, includes 320 KB of SRAM and 4 MB of flash memory. Like other ESP32 
modules, it supports Wi-Fi, but unlike the original WROOM-32, it does not support 
Bluetooth. The chip provides up to 43 GPIO pins, 16 PWM channels, and 20 ADC 
channels, which is slightly more compared to WROOM-32. What sets the ESP32-S2 
apart is its native USB OTG support, which allows it to act as a USB HID device, such 
as a gamepad or keyboard, without requiring any external USB bridge or extra MCU. 
The main drawback is its single-core design, which limits multitasking performance 
compared to dual-core models, but this tradeoff may be acceptable if real-time 
responsiveness is properly managed. 
 
The ESP32-S3 builds upon the capabilities of the S2 and is arguably the most 
feature-rich variant in the ESP32 family for the design we’re aiming to achieve. It retains 
native USB HID support, much like S2. It uses a dual-core Xtensa LX7 processor 
running at up to 240 MHz, with 512 KB of SRAM and 128 KB of RTC memory, offering 
more headroom for handling concurrent tasks such as sensor polling, LED animations, 
and USB communication. The S3 has 45 GPIO pins, 8 PWM channels, 20 ADC 
channels, and it expands functionality with BLE 5.0 support (though it lacks classic 
Bluetooth). The ESP32-S3 is especially suitable for performance-demanding 
applications that require both USB connectivity and multiple analog inputs, making it 
one of the best choices for a wired dance pad built around a single microcontroller. 
 
The ESP32-C3 is a compact, low-cost MCU in the ESP32 family that trades raw 
performance for simplicity and power efficiency. It features a single-core 32-bit RISC-V 
processor running at up to 160 MHz, with 400 KB of SRAM and 4 MB of flash memory. 
While some variants of C3 can support external flash chips up to 16 MB, some don’t, 
like the ESP32-C3-WROOM-02U. One of its most attractive features is its inclusion of 
native USB 2.0 support, enabling it to function as a USB HID device without requiring 
external USB-to-serial hardware. However, C3 only supports 22 GPIO pins, 6 hardware 
LED PWM channels, and 6 ADC channels, which makes it unsuitable for reading all of 
our dance pad’s inputs directly without the use of an analog multiplexer or external ADC 
chip. It does support BLE 5.0, though it lacks classic Bluetooth. Overall, while it’s not as 
powerful or feature-rich as the S2 or S3, the ESP32-C3 is a budget-friendly option for 
our designs, especially if analog input limitations can be mitigated with external circuitry. 
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Table 3.4 ESP32 boards and their features comparison table 
 
Feature ESP32-​

WROOM-32 
ESP32-S2 ESP32-S3 ESP32-C3 

MCU Chip ESP32-D0WD ESP32-S2 ESP32-S3 ESP32-C3 

Structure Dual-core 
Xtensa LX6 

Single-core 
LX7 

Dual-core LX7 Single-core 
RISC-V 

Clock Speed 240 MHz 240 MHz 240 MHz 160 MHz 

Flash Memory 4-16 MB 4-16 MB 4-16 MB 4-16 MB (some) 

SRAM 520 KB 320 KB ​
(128 KB RTC) 

512 KB​
(128 KB RTC) 

400 KB 

GPIO Pins 34 43 45 22 

PWM Channels 16 16 8 6 

ADC Inputs 18 20 20 6 

Native USB None USB OTG USB OTG USB 2.0 

Wi-Fi Yes Yes Yes Yes 

Bluetooth Classic + BLE None BLE 5.0 BLE 5.0 

Active Power 
Consumption 

High Moderate-High High Moderate 

MCU Chip Cost ~$2-3 ~$2 ~$2.50-3 ~$1.50-2 
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3.1.7 STM32 

STM32 is a series of 32-bit ARM Cortex-M microcontrollers. They’re known for having 
long-term reliability, rich peripheral sets (i.e. ADC, USB, timers, etc.), native USB 
support in most of its variants, strong real-time performance, great power efficiency, and 
full support in IDEs like STM32CubeIDE, Keil, PlatformIO, and Arduino (for some 
variants). We will be looking at the most common and fitting variant from each of the 
following STM32 families: STM32F1, STM32F4, STM32F0, and STM32L4.  
 
One of STM32F1’s most common MCU chips is the STM32F103C8, also known as the 
"Blue Pill" chip. It features a 72 MHz Cortex-M3 processor, 64 KB of flash memory, and 
20 KB of SRAM. It also has 37 GPIO pins, 15 PWM channels, and 10 ADC channels, 
which is sufficient for our design requirements. STM32F103C8 supports native USB 
Full-Speed, which can be configured for HID communication using STM32CubeMX and 
the HAL libraries. However, being an older generation chip, it has limited memory for 
larger LED effects or buffered inputs. Still, it remains a cost-effective and capable option 
for our design. 
 
One of STM32F4’s most common MCU chips is the STM32F407VG, which is a 
high-performance microcontroller based on the 168 MHz Cortex-M4 core with DSP and 
FPU support. It includes 1 MB of flash memory and 192 KB of SRAM. It also has 82 
GPIO pins, 3 ADCs (12-bit) that can handle up to a total of 16 multiplexed input 
channels, and supports up to 17 timers, several of which can generate PWM signals 
with up to 4 channels per timer. It also supports both Full-Speed and High-Speed USB, 
with High-Speed USB requiring an external PHY (Physical Layer). Overall, the 
STM32F407VG is ideal for advanced dance pad designs aiming for high 
responsiveness, complex LED patterns, or additional input features. The tradeoff is 
higher cost, larger size, and slightly more power consumption. 
 
One of STM32F0’s most common MCU chips is the STM32F072RB, which features a 
48 MHz Cortex-M0 processor, 128 KB of flash memory, and 16 KB of SRAM. It includes 
51 GPIO pins, 18 PWM channels, and 16 ADC channels (12-bit), making it a capable 
and low-power choice for handling our dance pad inputs and driving RGB LEDs. 
STM32F072RB supports native USB Full-Speed, and can be configured as a USB HID 
device using STM32CubeMX and the HAL libraries. While it lacks advanced processing 
features like DSP or FPU, its simplicity, low-cost, low power consumption, and USB 
support make it a great option for our design. 
 
One of STM32L4’s most versatile MCU chips is the STM32L476RG, which uses an 80 
MHz Cortex-M4 core with both DSP and FPU support. It comes with 1 MB of flash 
memory and 128 KB of SRAM, offering plenty of space for real-time processing and 
buffering. The STM32L476RG provides up to 76 GPIO pins, 24 PWM channels, and 16 
ADC channels (12-bit), allowing for extensive input reading and precise LED control. It 
also supports native USB Full-Speed and can operate in low-power modes, making it 
suitable for our design as it helps improve both performance and energy efficiency. The 
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main trade off is its slightly higher cost, but its extensive peripheral set and low-power 
capabilities make it a strong candidate for our design. 
 
Table 3.5 STM32 common MCU chips from different variants comparison table 
 
Feature STM32F1 STM32F4 STM32F0 STM32L4 

MCU Chip STM32F103C8 STM32F407VG STM32F407VG STM32L476RG 

Structure Cortex-M3 Cortex-M4 Cortex-M0 Cortex-M4 

Clock Speed 72 MHz 168 MHz 48 MHz 80 MHz 

Flash 
Memory 

64 KB 1 MB 128 KB 1 MB 

SRAM 20 KB 192 KB 16 KB 128 KB 

GPIO Pins 37 82 51 76 

PWM 
Channels 

15 ~17 timers 
each ≤ 4 PWM 

18 24 

ADC Inputs 10 16 16 16 

Native USB FS USB FS USB + HS 
(w/ PHY) 

FS USB FS USB 

Active Power 
Consumption 

Moderate High Very Low Very Low 

MCU Chip 
Cost 

~$2 ~$7-10 ~$1.50-2 ~$4-5 
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3.1.8 MCU Selection 

After comparing a wide range of microcontroller options, the Arduino Leonardo is the 
most optimal choice for our dance pad system based on its balance of cost-efficiency, 
simplicity, and native USB HID support. While it doesn’t offer the same raw processing 
power or extensive I/O capacity as higher-end MCUs like Teensy 4.1 or STM32F4 
variants, the Leonardo meets all of our core requirements while keeping system 
complexity low. 
 
Arduino Leonardo is powered by an 8-bit ATmega32U4 processor running at 16 MHz, 
with 32 KB of flash memory, 2.5 KB of SRAM, 30 I/O pins (7 PWM), and 12 ADC inputs. 
It natively supports USB HID, which allows it to act as a keyboard or joystick, crucial for 
our game’s real-time step detection. Compared to other Arduino boards like Uno or 
Mega, Leonardo is better suited to our needs due to this built-in USB functionality, 
eliminating the need for external USB-to-serial converters. 
 
Although the Leonardo offers fewer GPIO and less memory than boards like Teensy 4.1 
or ESP32, its performance is still sufficient for handling 9 FSR sensors and RGB LEDs, 
especially with efficient software handling and power management. Additionally, its 
popularity in DIY projects and compatibility with a wide variety of Arduino libraries make 
it an accessible and well-documented choice for rapid development and testing. 
 
Overall, Arduino Leonardo strikes the right balance between functionality, ease of use, 
and affordability, making it a practical and reliable core controller for our dance pad 
system, especially for single-player setups with limited hardware demands. 
 
3.2 Dance Pad Sensor 
 
In order for the pad to send signals to the game, we need sensors that can detect 
physical input and convert it into electrical signals for the microcontroller to process. 
There are four common sensor types we can consider for this project: force-sensing 
resistors (FSRs), load cells, strain gauges, and piezoelectric sensors. We compare 
them based on cost, accuracy, complexity, size, durability, and their ability to detect both 
hold steps and taps. First, we’ll explore what each sensor is, how it works, and how it 
meets the project’s engineering requirements.​
 

3.2.1 Force Sensing Resistors 

Force-sensing resistors (FSRs) are sensors that change resistance in response to 
applied pressure. They are commonly used in DIY and custom dance pad projects 
because they are inexpensive, easy to wire, and can be constructed using accessible 
materials like Velostat or copper tape. FSRs are also thin, flexible, and lightweight, 
making them ideal for compact pad designs. 
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Though FSRs offer quick response times and simple analog interfacing (via a voltage 
divider and an ADC pin), they lack precision and can show non-linear output and signal 
drift over time. Poor placement or surface inconsistency can lead to dead zones or 
inconsistent detection. Additionally, they are sensitive to temperature and humidity, 
affecting their long-term reliability. Overall, FSRs are a low-cost, simple, and responsive 
solution for detecting taps and light pressure in dance pads, but may not be ideal for 
applications requiring high durability or accuracy over time. 
 

3.2.2 Load Cells 

Load cells are force transducers that measure weight or applied force by detecting 
mechanical deformation, typically using internal strain gauges. They output either a 
millivolt signal (analog) or, in some designs, a digital signal after amplification. Load 
cells are known for their high accuracy, excellent stability, and long-term durability. 
 
Their downside lies in their higher complexity: they require a stable mechanical 
mounting, precise calibration, and amplification circuitry (such as an HX711 module) to 
interface with a microcontroller. Load cells also tend to be more expensive and bulky, 
which may be a constraint for slim pad designs. 
 
In summary, load cells are ideal for high-precision, arcade-grade dance pads where 
accuracy and reliability are top priorities, but they involve more cost, bulk, and circuit 
complexity than other options. 
 

3.2.3 Strain Gauges (Raw) 

Strain gauges are sensing elements that detect strain (deformation) in a material. This 
is typically a foil or wire pattern that changes electrical resistance when stretched or 
compressed. Unlike load cells, raw strain gauges don’t measure force directly, but rather 
the strain on a structure, which can then be correlated to force. 
 
When bonded carefully to structural parts of the pad, strain gauges can be very precise 
and customized for specific points of interest. However, they are also extremely 
sensitive to environmental noise and temperature, and they require precise installation, 
bridge circuits (e.g. Wheatstone bridge), and amplification to produce usable signals. 
 
While strain gauges can be affordable, they are technically complex, and not 
ready-to-use out of the box. They are best suited for custom mechanical frames where 
advanced integration is possible and where precision and internal structural feedback 
are desired. 

3.2.4 Piezoelectric Sensors 

Piezoelectric sensors use the piezoelectric effect to convert mechanical stress into 
electrical charge. When pressure or impact is applied, the crystal inside the sensor 
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generates a voltage spike. Piezo sensors are exceptional for detecting fast impacts, 
such as dance pad taps, and can distinguish between light and hard hits due to their 
high sensitivity and fast response. 
 
However, they cannot detect sustained pressure or holds, as they only respond to 
changes in force, not constant force. They are also prone to false triggers from 
vibration, footstep echoes, or mechanical noise, and they require careful physical 
isolation or dampening. On the hardware side, they are easy to wire (typically needing 
just a series resistor and ADC input), though voltage spikes may require clamping 
diodes to protect the MCU. 
 
Overall, piezoelectric sensors are affordable, fast, and ideal for games focused solely 
on tap detection, but they are not suitable for designs requiring hold step input or highly 
stable measurements. 
 

3.2.5 Break Beam Sensors 

Break beam sensors are non-contact optical sensors that detect the presence or 
absence of an object by interrupting a beam of infrared (IR) light between a transmitter 
and a receiver. When the beam is unbroken, the sensor outputs a steady signal; when 
the beam is interrupted (e.g. by a footstep), the signal changes, allowing the 
microcontroller to detect an input event. Break beam sensors are very fast, have high 
sensitivity, and are not affected by pressure wear, making them highly durable. 
 
However, they cannot detect how hard or long the player is pressing, so they are not 
capable of reading analog force or hold steps. Alignment between the emitter and 
receiver must also be precise, and ambient IR sources (like sunlight or reflective 
surfaces) can interfere with the sensor’s reliability. Additionally, their installation typically 
requires mounting hardware and unobstructed space under or around the panel. 
 
Overall, break beam sensors are a reliable and low-maintenance solution for detecting 
quick taps or triggered events, but they lack the analog depth needed for 
pressure-sensitive gameplay and cannot detect holds, making them best suited for 
tap-only rhythm games or basic input triggering. 
 

3.2.6 Dance Pad Sensor Selection 

Upon analyzing all contending sensors for our project, the most optimal choice is clearly 
the force-sensing resistor (FSR). FSRs are the most commonly used sensors in both 
DIY dance pad builds and even in many modern arcade dance machines. They are 
affordable and reliable components that offer fast response times, are simple to wire 
(usually requiring just a voltage divider circuit), and can detect both types of inputs 
required by our system: quick impacts and sustained press-and-hold steps. 
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Their flexibility and thin profile also make them ideal for fitting under lightweight or 
low-profile panel designs. As long as our physical construction ensures proper 
placement and force distribution, we can effectively minimize their main drawbacks: 
potential dead zones, non-linearity, and slightly lower accuracy compared to load cells 
or strain gauges. Another major advantage of FSRs is cost. Being relatively 
inexpensive, they allow for cost-effective replacements if damaged during testing or 
extended use, keeping long-term maintenance costs low. This aligns with our project's 
goals of affordability and maintainability. 
 
FSRs can be easily wired and pair well with Arduino Leonardo. Much like Arduino 
Leonardo, the FSR’s simplicity contributes to lower system complexity, enabling us to 
focus more on refining input responsiveness, game logic, and RGB LED feedback. 
Overall, FSRs offer the best balance of performance, simplicity, and cost for our dance 
pad sensor needs. 
 
Table 3.6 Dance Pad Sensors and their features comparison table 
(Legend: ↑↑ = very high; ↑ = high; M = moderate; ↓ = moderate/low; ↓↓ = very low) 
 
Feature FSRs Load Cells Strain Gauges 

(Raw) 
Piezoelectric 
Sensors 

Break Beam 
Sensors 

Size ↓↓ ↑ ↓↓ ↓ M 

Cost ↓↓ ↑ ↓ ↓ ↓ 

Response 
Time 

↑ ↑ ↑ ↑↑ (impact) ↑↑ 

Accuracy ↓ ↑↑ ↑↑ ↑ (impact) ↓ 

Complexity ↓↓ ↑ ↑↑ M ↓ 

Durability ↓ ↑↑ M ↓ ↑ 

Impact Input ✓ ✓ ✓ ✓ ✓ 

Sustain Input ✓ ✓ ✓   
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3.2.7 Force Sensing Resistor Selection 

 
Now that we have decided on using FSRs, what’s the most optimal way to integrate 
them into our design? There are two ways we can implement the functionality of FSRs 
into our dance pad:  

1.​ Using the hard physical component FSR Model 408 (300mm length) 
2.​ DIY with conductive material (e.g., copper or aluminum) + Velostat 

 
The FSR Model 408 is a commercially manufactured force-sensing resistor that is 
300mm long and designed to offer reliable force measurements in a slim, flexible form. 
It comes with a pressure-sensitive strip and integrated terminals, making it easy to wire 
into an analog input. Because it is pre-calibrated and professionally manufactured, it 
ensures consistency in pressure sensitivity and response across all pad panels. Its 
reliable construction reduces the risk of false triggers, drift, and dead zones. However, 
the downside is its higher cost, with each unit typically ranging from $15 to $30 
depending on the supplier. In our case, we are looking into Interlink Electronics: $27.93 
subtotal + $9.99 shipping = $37.92 total cost. Using nine of these for a full pad setup 
can add significant expense to the overall budget. Fortunately, we already have five in 
hand, but we still need to purchase 13 more. It’s also slightly less customizable in terms 
of shape and contact area compared to DIY designs. 
 
The DIY method involves using copper or aluminum tape as conductive contacts with 
Velostat or other pressure-sensitive films in between. This approach offers high 
flexibility and full control over the size, shape, and placement of each sensor. It’s 
significantly more cost-effective, for instance, components like Velostat and copper tape 
are inexpensive and widely available. However, DIY FSRs require careful assembly and 
testing, as inconsistency in spacing, adhesion, or material thickness can lead to issues 
like input dead zones or uneven sensitivity. Additionally, they may degrade faster over 
time compared to commercial FSRs and require more trial and error to calibrate 
effectively. 
 
Given our goals of reliability, performance consistency, and minimizing potential issues 
like dead zones or calibration errors, the FSR Model 408 is the optimal choice for our 
dance pad system. While the DIY conductive method offers more flexibility and lower 
upfront cost, it also introduces variability and requires more effort in calibration and 
maintenance. The FSR Model 408 provides a plug-and-play experience with consistent 
force detection across all panels, reducing uncertainty during development and 
improving long-term durability. This makes it a better fit for our design, where input 
timing accuracy and sensor stability are critical for gameplay. The investment in pre-built 
FSRs will ultimately pay off in performance and ease of integration. 
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Table 3.7 FSR Model 408 and DIY Conductive Material + Velostat comparison table 
(Legend: ↑ = high; M = moderate; ↓ = moderate/low) 
 
Feature FSR Model 408 (300 

mm) 
DIY Conductive Material + 
Velostat 

Cost per Sensor ↑ ($15-$30) ↓ (~$3) 

Customizability ↓ ↑ 

Assembly Effort ↓ ↑ 

Reliability ↑ M 

Sensitivity Consistency ↑ M 

Dead Zone Risk ↓ M 

Durability ↑ ↓ 

Ease of Replacement M ↑ 

 
3.3 Communication Protocols 

3.3.1 External Communication Protocols 

The Pad PCB communicates with the PC using the USB (Universal Serial Bus) 
interface. This connection allows for two-way communication: the pad sends input 
signals from the FSRs to the game on the PC, while the game may send output 
feedback such as score or event triggers back to the pad, which can influence the RGB 
LED animations on the dance pad. This is the only part of the system where a formal 
communication protocol needs to be noted, since it involves a standardized method of 
digital data exchange between two systems. Other parts of the system either use simple 
analog sensing (e.g., FSRs) or digital HIGH/LOW signaling (e.g., to toggle the LED 
PCB), which do not involve a full protocol. 
 
The communication over USB is handled using a standardized communication protocol, 
typically either USB CDC (Communication Device Class) or USB HID (Human Interface 
Device). CDC presents the pad as a virtual serial (COM) port, allowing for 
general-purpose data exchange. HID, on the other hand, is commonly used for devices 
like keyboards, mice, and game controllers, and it allows input data (such as button 
presses or sensor values) to be transmitted to the PC with low latency and without 
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requiring custom drivers. For our design, we are going to use USB HID because we 
want our pad to act like a keyboard for the PC.  
 

3.3.2 Internal Communication Protocols 

In any distributed embedded system, a reliable communication protocol is the essential 
link that allows multiple microcontrollers and peripherals to work together as a cohesive 
whole. A communication protocol establishes a set of rules for data exchange, defining 
everything from the physical number of wires required to the format of the data packets 
being sent. For the modular 9-tile dance pad, the choice of protocol is a critical design 
decision. It must efficiently connect the central "Master Controller" board to the nine 
smart “Input Tiles”, enabling the master to poll for sensor data and send lighting 
commands with minimal latency and wiring complexity. This section explores the 
technology behind three of the most common embedded communication protocols: 
UART, SPI, and I2C compare their strengths and weaknesses and select the most 
appropriate protocol for the project's specific requirements.  

3.3.2.1 UART (Universal Asynchronous Receiver-Transmitter)  

UART is a simple and widely used protocol for point-to-point serial communication. It is 
"asynchronous" because it does not use a shared clock signal to synchronize the 
sender and receiver. Instead, both devices must be pre-configured to operate at the 
same data rate, known as the "baud rate."  

Communication requires only two wires, a Transmit (TX) pin on one device connects to 
the Receive (RX) pin on the other. This allows for full-duplex or two-way communication. 
Data is transmitted in a "frame," which consists of a start bit to signal the beginning of a 
transmission, 5 to 9 data bits, an optional parity bit for error checking, and one or two 
stop bits to signal the end of the frame. The idle state of the line is high voltage, and the 
start bit is a transition to low, which allows the receiving device to synchronize its timing 
to the incoming data.  

Suitability for Project  

While UART is simple and reliable for connecting two devices, it is fundamentally a 
point-to-point protocol. It is not designed to support multiple devices on the same bus 
without additional complex hardware and software to manage addressing and bus 
contention. To connect the Master Controller to nine separate Tile Boards, it would 
require nine separate UART interfaces on the master, which is not practical. Therefore, 
UART is unsuitable for this project's multi-device bus architecture.  

3.3.2.2 Inter-Integrated Circuit (I2C)  

I2C is a synchronous, multi-master, multi-slave communication protocol designed 
specifically for connecting multiple devices on a single, shared bus. It achieves this with 
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remarkable efficiency, requiring only two wires, SCL (Serial Clock): The clock signal, 
typically generated by the master, SDA (Serial Data): The bidirectional data line.  

Unlike SPI, I2C does not use individual slave select lines. Instead, it uses an addressing 
scheme. Every device on the I2C bus must have a unique 7-bit address. When the 
master wants to communicate, it first sends out the unique address of the slave it wants 
to talk to. All devices on the bus hear this address, but only the one whose address 
matches will respond. This allows a single master to communicate with up to 112 
different slave devices using the same two wires.  

Suitability for Project 

I2C is an excellent protocol for the dance pad's internal bus architecture. Its primary 
advantage is the ability to connect all nine "Input Tile" boards to the "Master Controller" 
using just two wires (SCL and SDA), plus power and ground. This drastically simplifies 
the wiring harness and reduces the required pin count on the master controller when 
compared to SPI. While its data speed is lower than SPI's, it is more than sufficient to 
handle polling sensor data and sending lighting commands across the nine tiles without 
introducing any noticeable latency. Given that the I2C protocol was specifically designed 
for this type of multi-peripheral, intra-system communication, it is the best engineering 
choice for this project. 

3.3.2.3 Serial Peripheral Interface (SPI) 

SPI is a synchronous, full-duplex, master-slave communication protocol known for its 
very high speed. It is "synchronous" because the master device generates a clock 
signal that is shared by all devices on the bus, ensuring perfect data synchronization.  

A standard SPI bus requires four wires: SCLK (Serial Clock): The clock signal 
generated by the master. MOSI (Master Out, Slave In): The line the master uses to 
send data to slaves. MISO (Master In, Slave Out): The line the slaves use to send data 
back to the master. SS (Slave Select): The master uses a separate SS line for each 
slave. To talk to a specific slave, the master pulls that slave's SS line low.  

This individual slave select line is a key feature of SPI. While it guarantees there are no 
address conflicts, it also means that connecting to many slaves requires many extra 
pins on the master device.  

Suitability for Project  

SPI's primary advantage is its speed, which is often overkill for an application like a 
dance pad where data packets are small and infrequent. Its main disadvantage for this 
project is the high pin count. To connect to nine Tile Boards, the Master Controller would 
need nine dedicated Slave Select pins in addition to the three shared bus lines (SCLK, 
MOSI, MISO). While the ATmega32U4 has enough pins, this creates a complex and 
cumbersome wiring harness. For these reasons, SPI is a viable but not the optimal 
choice. 
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3.3.3 Comparison and Final Selection  

Table 3.8 Comparison table of communication protocols​
 

Feature  UART  SPI  I2C  

 Pin Count   2 (per device)   4 + (N slaves)   2 (total)  

 Speed   Low   Very High   Moderate  

 Multi-Device Support   No (Point-to-Point)  Yes (High pin count)   Yes (Address-based) 

 Complexity   Low   Moderate   Moderate  

 Project Suitability   Unsuitable   Possible but not 
ideal   Optimal  

The analysis shows that I2C is the optimal communication protocol for the dance pad 
project. Its primary advantage is its ability to connect all nine Tile Boards to the Master 
Controller using only two wires for data and clock, plus two for power. This dramatically 
simplifies the wiring harness, reduces the pin count on the master, and makes the entire 
system more modular and scalable. While its data speed is lower than SPI's, it is more 
than fast enough to handle the polling of sensor data and the sending of lighting 
commands without introducing any noticeable latency. The I2C protocol was specifically 
designed for this type of intra-system communication, making it the best engineering 
choice for linking the “Master Controller” to its nine “Input Tile” peripherals.  

3.4 Analysis of 12V Power Supplies for Embedded Systems  

3.4.1 The Critical Role of the Power Supply  

In any electronics project, the power supply is the foundational component upon which 
all other systems depend. Its primary function is to convert electrical energy from a 
source, typically a high-voltage AC wall outlet, into a stable, low-voltage DC form that is 
usable by sensitive electronic components like microcontrollers, sensors, and LEDs. For 
the 9-tile dance pad project, the power supply is not merely an accessory; it is a critical 
subsystem that must reliably power both low-current, noise-sensitive logic and 
high-current, noise-generating lighting systems. A poorly chosen or inadequately 
designed power supply can lead to a host of problems, including system instability, 
inaccurate sensor readings, and even permanent damage to components. This paper 
will explore the technologies behind common 12V power supplies, compare their 
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suitability for the project, and recommend a specific type to ensure robust and reliable 
operation.  

3.4.2 Project Power Requirements  

The dance pad project presents a mixed-load challenge. The system requires a single 
12V DC input, which must then be conditioned and distributed to serve two distinct 
functions. The primary load is the high-current 12V infrared (IR) LED strip that 
surrounds the television display. This high-power load is essential for the computer 
vision system and will draw approximately 2.8 Amps. The second load is the low-current 
controller logic, which includes the custom "Power Hub" PCB and its 5V regulator. This 
regulator powers the main "Master Controller" board and the nine "Tile Board" 
microcontrollers, representing a low-power, noise-sensitive system that requires a very 
clean and stable power source.  

The total estimated current draw from the 12V source is approximately 3.3 Amps. 
Therefore, a power supply with a rating of at least 4-5 Amps is required to provide a 
safe operating margin.  

3.4.3 Power Supply Technologies  

There are three primary categories of AC-to-DC power supplies that could be 
considered for this project: unregulated, linear regulated, and switch-mode.  

Unregulated Power Supplies  

An unregulated power supply is the simplest form of AC-to-DC conversion. It consists of 
a transformer to step down the AC voltage, a full-wave bridge rectifier to convert the AC 
to pulsating DC, and a large filter capacitor to smooth the pulsations into a relatively 
steady DC voltage. While this design is simple, inexpensive, and reliable due to its low 
component count, its output voltage is not regulated. It will vary significantly with 
changes in the AC line voltage and the amount of current being drawn. The output also 
contains significant "ripple," which is leftover AC pulsation that can interfere with 
sensitive electronics. Due to the lack of regulation and high ripple, this type of supply is 
unsuitable for the project, as it would be impossible to reliably power the 
microcontrollers and could cause the LEDs to flicker or dim under load.  

Linear Regulated Power Supplies  

A linear supply begins with the same components as an unregulated supply but adds a 
linear regulator. This regulator acts like a variable resistor, constantly adjusting itself to 
burn off excess voltage as heat, resulting in a very stable and clean output voltage. The 
primary advantage of this technology is its extremely low noise and ripple, making it 
ideal for powering highly sensitive analog circuits, audio equipment, and laboratory 
instruments. However, it is also extremely inefficient. The process of dissipating excess 
voltage as heat is incredibly wasteful. For this project's power level, a linear supply 
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would be massive, heavy, and would generate a tremendous amount of heat, making it 
completely impractical. While the clean output is desirable, the poor efficiency and large 
size render it unsuitable for this application.  

3.4.4 Switch-Mode Power Supply (SMPS) Technology  

How They Work  

A Switch-Mode Power Supply (SMPS) is a much more modern and complex design that 
achieves very high efficiency. Instead of burning off excess voltage as heat, it works by 
rapidly switching the input voltage on and off. The process begins by rectifying the 
incoming AC voltage to high-voltage DC. A high-frequency switch, typically a MOSFET, 
then chops this DC into a series of pulses thousands of times per second. These 
high-frequency pulses are fed into a very small, lightweight transformer to be stepped 
down. The output of the transformer is then rectified and filtered to produce the final, 
stable output voltage. A feedback control circuit constantly monitors the output and 
adjusts the switching to keep the voltage perfectly stable, regardless of changes in load 
or input voltage.  

 

Figure 3.1 SMPS Block Diagram 
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Figure 3.2 12V 5A SMPS Circuit Diagram 

Characteristics  

The primary advantage of an SMPS is its high efficiency, typically between 80-95%, 
which means very little energy is wasted as heat. The use of a high-frequency 
transformer allows it to be much more compact and lightweight than a linear supply of 
the same power rating. Furthermore, most SMPS units can accept a universal AC input, 
making them usable worldwide. The main drawback is the complexity of the internal 
design and the electrical noise (EMI/RFI) generated by the high-frequency switching 
process. However, a well-designed SMPS includes internal filtering to minimize this 
noise.  

Suitability for Project  

The SMPS is highly suitable for this project and aligns with the industry standard for 
powering most modern consumer electronics. Its ability to efficiently convert electrical 
power with minimal heat generation makes it ideal for a system like a dance pad, which 
requires reliable and consistent power delivery to multiple components including 
sensors, microcontrollers, and LED panels. The compact physical footprint of an SMPS 
also allows it to be easily integrated into the slim and portable housing typical of 
arcade-grade or DIY dance pad designs. 

Moreover, SMPS units support a wide input voltage range and are capable of providing 
stable output voltages, which is particularly important in a project where fluctuating 
power could lead to erratic sensor behavior or missed inputs. While SMPSs do 
inherently generate electrical noise due to their high-frequency switching, this drawback 
is mitigated by the inclusion of filtering and decoupling capacitors within the project’s 
custom-designed PCBs. These capacitors help suppress voltage ripple and 
electromagnetic interference, ensuring the rest of the circuit operates smoothly. 
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3.4.5 Comparison and Selection  

Table 3.9 Comparison table of the three types of power supplies in the context of the 
dance pad project’s specific needs 

Feature  Unregulated 
Supply  

Linear Regulated 
Supply  

Switch-Mode Supply 
(SMPS)  

 Voltage 
Regulation       Poor       Excellent        Excellent  

 Efficiency   N/A (Poor)   Very Poor (~30-40%)   Excellent (~80-95%)  

 Size & Weight   Large & Heavy   Very Large & Very    
Heavy   Compact & Lightweight  

 Heat Generation   Moderate   Very High   Low  

 Output  
Noise/Ripple   High   Very Low   Low (with proper filtering)  

 Cost   Low   High (for this power   
level)   Low to Moderate  

 Project Suitability     No   No   Yes  

Form Factor  

Within the SMPS category, there are two main form factors to consider. The first is an 
open-frame power supply, which is a bare PCB designed to be mounted inside a larger 
enclosure. While valid, this option requires careful handling to avoid electrical shock and 
is not ideal for a student project.  

The second, more appropriate option is an external enclosed power supply, commonly 
known as a "power brick." This is the familiar black box used for laptops and other 
consumer electronics. Its high-voltage components are safely enclosed in a plastic 
case, and these units come with pre-approved safety certifications like UL and CE, 
which is a major advantage. It offers a simple, plug-and-play solution that requires no 
high-voltage wiring by the user. Reputable brands also include excellent internal filtering 
to minimize noise output.  
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Final Selection  

Based on this analysis, the recommended power supply for the 9-tile dance pad project 
is a 12V DC, 5A External Enclosed Switch-Mode Power Supply. The 12V output 
matches the voltage requirement of the IR LED strip, while the 5A current rating 
provides a safe operating margin above the calculated 3.3A total system load. The 
external enclosed form factor offers the best combination of safety, convenience, and 
reliability for this application.  

3.4.6 Conclusion and Implementation  

The selection of a power supply is a critical design decision that impacts the reliability, 
safety, and performance of an entire embedded system. After analyzing the technical 
characteristics of unregulated, linear regulated, and switch-mode power supplies, it is 
clear that the Switch-Mode Power Supply (SMPS) is the only practical and effective 
solution for the 9-tile dance pad project.  

The project's mixed-load requirement, powering both a high-current LED system and 
sensitive, low-current microcontrollers, is best served by the high efficiency and 
excellent regulation of an SMPS. While the potential for electrical noise from an SMPS 
is a valid concern, this is effectively mitigated by the robust power filtering and 
decoupling designed into the project's custom PCBs. The ferrite beads, bulk filtering 
capacitors, and local decoupling capacitors on the Power Hub and Master Controller 
boards are specifically designed to handle the type of noise an SMPS produces, 
ensuring clean power for all sensitive components.  

The final recommendation is to procure a high-quality, 12V, 5A external enclosed 
SMPS ("power brick") from a reputable manufacturer. This choice leverages the 
benefits of SMPS technology while delegating the complexities and safety concerns of 
high-voltage AC-to-DC conversion to a pre-certified, off-the-shelf component. This 
allows the project to focus on its core innovation: the custom PCB design for the 
modular tile system and the master controller. By making this selection, the project is 
built upon a foundation of stable, efficient, and safe power, ensuring the best possible 
chance for a successful outcome.  

3.5 Analysis of LED Driver Technologies for High-Power 
Illumination  

3.5.1 Introduction to LED Drivers  

Light Emitting Diodes (LEDs) have become the standard for modern lighting 
applications due to their high efficiency, long lifespan, and fast response times. 
However, unlike simple incandescent bulbs, LEDs are semiconductor devices that 
cannot be connected directly to a voltage source. They require a specialized circuit, 
known as an LED driver, to operate correctly and reliably. The driver's primary function 
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is to regulate the power supplied to the LED, ensuring it receives a consistent forward 
current to produce stable light output without being damaged.  

For the 9-tile dance pad project, the LED driver is a critical component of the computer 
vision subsystem. It must power a high-current 12V infrared (IR) LED strip that provides 
consistent illumination for the player-tracking camera. Furthermore, the driver must 
allow for precise brightness control via Pulse-Width Modulation (PWM) to adapt to 
varying ambient light conditions, ensuring the computer vision system remains robust 
and accurate. This paper will explore the fundamental technologies behind LED drivers, 
compare different circuit topologies, and select the most appropriate design to meet the 
project's technical and academic requirements.  

3.5.2 Fundamentals of LED Operation and Dimming  

An LED's brightness is directly proportional to the forward current flowing through it, not 
the voltage across it. If the voltage is too low, no current flows and no light is produced. 
If the voltage is too high, the current can increase exponentially, leading to rapid 
overheating and catastrophic failure. Therefore, the core task of any driver is to provide 
a constant, controlled current. There are two primary methods for controlling an LED's 
brightness analog dimming and Pulse-Width Modulation (PWM):  

Analog Dimming 

 This method involves simply reducing the constant current flowing through the LED. 
While simple, it has significant drawbacks. As the current changes, the color 
temperature of the LED can shift, which is particularly problematic for applications 
requiring consistent light quality. It is also less precise and can be inefficient.  

Pulse-Width Modulation (PWM) Dimming 

 This is the superior and more common method. The driver switches the LED on and off 
at a frequency too high for the human eye or a camera to perceive. The LED is always 
driven at its optimal forward current, but the duty cycle (the percentage of time the LED 
is on versus off) is varied. A low duty cycle results in a dim appearance, while a high 
duty cycle results in a bright appearance. This method maintains a consistent color 
temperature and allows for very precise, linear brightness control, making it the ideal 
choice for the project's IR illumination system.  

3.5.3 Comparison of LED Driver Circuit Topologies  

There are several ways to design a circuit that can drive and dim an LED strip. These 
range from simple resistive limiters to complex integrated circuits.  

Simple Resistor Driver  

The most basic approach is to place a resistor in series with the LED strip to limit the 
current. While functional for single, low-power indicator LEDs, this method is entirely 
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unsuitable for high-power applications. The resistor would need to be very large to 
dissipate the excess power, generating a massive amount of waste heat. More 
importantly, it provides no regulation; as the LEDs heat up, their electrical characteristics 
change, causing the current to drift and the brightness to become unstable.  

Linear Constant-Current Driver  

A linear driver uses a transistor (like a BJT or MOSFET) operating in its linear region to 
act as a variable resistor, ensuring a constant current flows to the LEDs. This design 
provides a very clean, noise-free output. However, like a linear voltage regulator, it is 
extremely inefficient. It controls the current by burning off all excess power as heat. For 
the project's ~3A load, a linear driver would become dangerously hot and waste a 
significant amount of energy, making it an impractical choice.  

Simple MOSFET Switch (Low-Side Driver)  

This was the initial design considered for the project. An N-Channel MOSFET is used 
as a simple switch on the low-side (ground connection) of the LED strip. The PWM 
signal from a microcontroller turns the MOSFET on and off. This circuit is simple, 
inexpensive, and can handle high currents. However, it provides no current regulation. 
The brightness of the LEDs will still vary if the main 12V supply voltage fluctuates, and it 
does not protect the LEDs from potential over-current situations. While functional, it 
lacks the robustness and precision required for a high-performance system.  

3.5.4 Dedicated Switching (Buck) LED Driver IC  

The most advanced and professional solution is to use a dedicated Integrated Circuit 
(IC) designed specifically for driving LEDs. These ICs are complete Switch-Mode Power 
Supplies (SMPS) on a chip, configured as constant-current buck converters.  

How They Work: A buck converter efficiently steps down voltage by switching a 
MOSFET on and off at a high frequency, using an inductor and diode to smooth the 
output. An LED driver IC takes this a step further. It includes a feedback loop that 
monitors the current flowing to the LEDs via a small, external sense resistor. The IC 
constantly adjusts the switching duty cycle to ensure the output current remains 
perfectly stable, regardless of changes in input voltage or temperature. These ICs also 
have a dedicated input pin for a PWM signal, which is used to precisely control the 
dimming of the constant-current output.  

This topology combines the high efficiency of a switching regulator with the precise 
current control needed for high-power LEDs. It is the most robust, efficient, and 
feature-rich solution.  
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3.5.5 Comparison and Selection  

A comparison of the viable driver technologies clearly points to the dedicated IC as the 
superior choice.  

Table 3.10 Comparison table of driver technologies 

Feature  Simple MOSFET Switch  Dedicated Driver IC (e.g., MP24894)  

 Current 
Regulation  None    Excellent (Constant Current)  

 Efficiency   High    Very High  

 Brightness  
Stability  

 Fair (Varies with  
Voltage)    Excellent  

 Component Count    Low     High  

 Design 
Complexity     Low    High  

 Protection  
Features     None    Often built-in (e.g., thermal shutdown)  

While a simple MOSFET switch is functional, it does not meet the project's need for 
precise and stable illumination for the computer vision system. Furthermore, it does not 
satisfy the academic requirement to integrate a complex reference circuit.  

 

Figure 3.3 MP2489 LED Driver Circuit Diagram 
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The dedicated switching LED driver IC is the optimal solution. It provides the high 
efficiency and precise constant-current control necessary for reliable performance. The 
selection of the MP24894 for this project is a direct implementation of this technology. 
By building the reference circuit for this IC, the project demonstrates a significant level 
of design complexity, directly addressing the guidelines to "integrate existing reference 
circuit designs to meet all design requirements." This approach results in a 
professional-grade, robust, and highly functional LED driver that is perfectly suited to 
the demands of the dance pad's computer vision system.  

 

3.6 Imaging Subsystem  

3.6.1  Monochrome vs RGB Sensor 

Selecting  the  appropriate camera sensor for the S.T.E.P.S vision system was an 
important  decision in the beginning stages of the design process. Technically a RGB or 
monochrome sensor could be used. Each sensor type has distinct advantages and 
weaknesses. Monochrome sensors are known for producing high-contrast and 
high-resolution images due to the absence of color filter arrays.[11] Which can improve 
clarity and reduce light loss. These sensors are particularly effective in applications 
where edge detection, structure analysis, or low-light imaging is critical. They also 
generate smaller data sizes which reduces computational load. These factors are all 
very promising when considering a major goal of the system is to minimize the 
computational load and processing  time of the vision system.  
 
However, the pose estimation model used in this system is MediaPipe. MediaPipe’s 
system is optimized for RGB input as it relies on color information to identify and track 
body landmarks accurately, using patterns in hue and saturation to distinguish between 
limbs and background.[10] Since RGB sensors capture color images in a format that 
mirrors human visual perception, these sensors are the  best to use for AI models that 
interpret motion and orientation. In the S.T.E.P.S system, visual feedback is provided to 
the player via the RGB LED arrays placed in the dance pads. While the motion is 
captured using the FSR sensors, pose estimation is captured purely through visual 
tracking. In this case, a monochrome sensor would introduce ambiguity in differentiating 
the background from the player due to no color differentiation.Therefore, the  benefits 
from using a RGB sensor outweigh those of the monochrome sensors in this 
application. Despite their slightly higher data rates and lower per-pixel sensitivity. The 
deficiencies in image contrast or sharpness introduced by the RGB filter array are 
mitigated through diligent and carefully designed lens system and image scale 
optimization.  This comparison is summarized in table 3.11. 
 
 
 
 
 

50 



 

Table 3.11 RGB vs. Monochrome Sensor Comparison 
 

3.6.2 Camera Comparison 

Several camera modules were considered to balance resolution, frame rate, and price. 
The chosen camera needed a pixel pitch suitable for resolving ~ 1mm features, a frame 
rate of at least 30 FPS for smooth gameplay, a cost preferably under $100 to fit system 
goals, and compatibility with the 850nm illumination. Originally, the Arducam AR0234 
USB 2MP global shutter camera was identified as a strong candidate. Its 3.0 µm pixel 
pitch, RGB output, and use of no IR-cut filter makes it ideal  to properly sense the NIR 
illumination. The global shutter also significantly reduces motion blur, which is important 
during fast player movement.[29]  
 
Through more research, a lower-cost alternative using the same AR0234 sensor was 
found through SVPRO. The SVPRO 2MP Global SHutter USB camera module offers 
similar specifications, including global shutter operation, M12 lens compatibility, and 
RGB output, but for a better price. Its lower cost makes it more ideal for the prototype 
phase. However, it may have reduced support and documentation compared to the 
Arducam-branded product. The Raspberry Pi HQ camera was also considered because 
of its modular CS-mount compatibility, but its rolling shutter and low frame rate made it 
less suitable for pose estimation. Overall, the SVPRO AR0234 offers a balanced 
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Attribute Monochrome Sensor RGB Sensor 

Image Contrast & 
Sharpness 

Higher ( no color filter 
array) 

Lower due to color filter 
array (CFA) 

Light Sensitivity Higher( no CFA, more light 
per pixel) 

Lower (CFA reduces 
incoming light) 

Data Size Smaller (single channel) Larger ( 3 channels: R, G, 
B) 

Computational Load  Lower (less data to 
process) 

Higher (more data to 
process) 

AI Compatibility Not supported by 
MediaPipe (requires RGB 
input) 

Fully supported and 
optimized for MediaPipe 

Background Differentiation Poor (no color distinction 
between limbs, 
background) 

Good (color cues help 
separate limbs and 
surroundings 

Suitability Not suitable due to 
MediaPipe incompatibility 

Selected for pose tracking 
and AI model compatibility 



 

trade-off between pixel size, cost, and motion capture. The specifications for these 
candidate cameras are summarized in Table 3.12.  
 
Table 3.12 Camera comparison table 
 
Camera Pixel Pitch(µm) Frame Rate 

(FPS) 
Price (USD) Shutter Type 

Raspberry Pi 
HQ (IMX477) 
 

1.55 20 $53.78  Rolling 

Arducam 
AR0234 Global 
Shutter 

3.0 60 $109.99 Global 

SVPRO 
AR0234 Global 
Shutter 

3.0 60 $76.99 Global 

 

3.6.3 Lens Comparison 

A wide field of view and short focal length were prioritized to capture the entire 114’’ x 
114’ dance pad area from approximately 1.8m away. Research into wide-angle M12 
lenses focussed on models with a horizontal field of view near 93°, focal lengths around 
3 mm, minimal distortion, sufficient depth of field, and a price under or as close to $100 
as possible.[12] These lenses are well-suited for compact vision systems, and the M12 
mount allows easy replacement and adjustment during prototype testing.   
 
Although the SVPRO AR0234 camera module includes pre-installed wide-angle M12 
lens, alternative 3 mm M12 aspherical lenses will be evaluated to verify critical 
requirements such as distortion, IR transmission, and image sharpness for the 850 nm 
active illumination. This ensures the final lens selection supports consistent MediaPipe 
landmark detection and meets the project’s performance targets. Commercially 
available aspherical M12 lenses with focal lengths around 3 mm were identified as the 
best balance of wide-angle coverage and low distortion. Aspherical designs help reduce 
spherical aberration and maintain sharpness across the entire field of view, which is 
important for MediaPipe pose tracking and consistent landmark detection.[12] Although 
a fully custom-designed aspherical lens could in theory optimize every optical 
parameter, the cost and fabrication complexity made that impractical for this prototype. 
Therefore, an off the shelf aspherical wide-angle M12 lens will be the baseline option. 
 
After evaluating multiple M12-mount aspherical lenses compatible with the sensor, the 
Commonlands CIL034 was the most appropriate. This lens has a 3.2 mm focal length 
with  approximately 87° HFOV on the AR0234. This field of view allows the camera to 
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capture the full 114’’ x 114’’ dance pad area from a working distance of 1.8m without 
excessive mounting height or tilt. Its aspherical design supports reduced geometric 
distortion, which is beneficial for MediaPipe tracking, while remaining compatible with 
typical project constraints on cost and mechanical mounting. The depth of field is also 
not a concern because this lens provides a deep focus range, ensuring the entire player 
remains sharp throughout motion across the full depth of the dance pad. Two additional 
lenses were also evaluated for comparison and their specifications are summarized in 
Table 3.13. Both of these lenses provided compatible focal lengths and apertures but 
did not have the horizontal field of view needed. 
 
 

 
 
Figure 3.4 Top-down field of view comparison between candidate M12 lens at 6ft 
camera mounting distance. The dashed line represents the full 36 inch-wide dance pad 
area, while the dotted blue line represents the 114″ total play area for full-body motion 
tracking.Wider FOV lenses (e.g., CIL329) cover the full width easily, while narrower 
lenses like CIL036 may risk cutting off edge activity. 
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Figure 3.5 DOF comparison between candidate M12 lenses based on calculated near 
and far limits at 1.83 m subject distance. 
 
While the FOV angles of the candidate lenses appear visually exaggerated in top-down 
diagram in figure 3.4, they are necessary to fully encompass the 2.9 m x 2.9 m player 
tracking area from a 6 ft mounting distance. Wide-angle lenses, although susceptible to 
edge distortion, are essential to ensuring full- body pose detection remains accurate 
without requiring multiple cameras or stitching. Lenses with FOVs ranging from 65 to 
120 were considered, with wider-angle options offering increased coverage at the 
expense of potential barrel distortion near the edges. Despite this, these lenses are 
well-suited for single-camera full-body tracking, particularly when paired with 
post-processing or AI algorithms that are resilient to optical distortion. The final selection 
strikes a balance between angular coverage, pixel resolution, and optical simplicity. 
 
Figure 3.5 compares the usable depth of field range for the 2.8mm, 3.2 mm, and 4.0 
mm lenses evaluated for the S.T.E.P.S optical system. As expected, shorter focal 
lengths provide greater DOF, with the 2.8 mm lens offering the deepest focus range at 
1.33 m. The selected 3.2 mm lens maintains a strong DOF of 1.23m, which is sufficient 
to keep the entire player in focus across the 2.9 m x 2.9 m player tracking area  from the 
1.8 m camera distance. Although the 4.0 mm lens offers slightly higher image resolution 
and lower distortion, its narrower DOF of 1.04 m increases the risk of motion blur or 
focus loss during dynamic movement. Figure 3.5 reinforces the 3.2 mm lens as a 
balanced choice that preserves focus stability while still meeting resolution and field of 
view requirements. 
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Table 3.13 Lens options and their specifications 
 
Lens Focal 

Length(mm) 
Horizontal FOV 
(°) 

Aperture (f/#) Price (USD) 

Commonlands 
CIL034 

3.2 ~87 2.4 $39 

Commonlands 
CIL329 

2.8 ~120 2.4 $39 

Commonlands 
042  

4.0 ~68 1.9 $59 

  
Although the selected 3.2 mm lens provided an 87° HFOV, slightly under the calculated 
93° requirement, it was deemed acceptable given its low distortion profile, adequate 
central coverage, and compatibility with the chosen sensor. Further testing will 
determine if the minimal cutoff at the pad edges will have significant impact on 
gameplay detection or user experience based on planned camera placement and pose 
tracking zones  during faster/ more dynamic movement . 

3.7 LED illumination Technology 

For the illumination system, both white & RGB LED strips, as well as individual LEDs 
were considered. Thorough research went into deciding which option would be the most 
optimal for this system.  While RGB LEDs would offer more visual customization, they 
raise possible challenges due to their color inconsistencies and power complexity 
making them less ideal for computer vision tasks. White LEDs would provide better 
illumination with more uniform color output and higher power efficiency[9], but could 
also cause discomfort to the players’ eyes. Ensuring that MediaPipe is able to 
consistently perform reliable pose detection is more important than aesthetic lighting, 
but player comfort is an equally important metric.  
 
With that being said, more research went into finding an alternative that would satisfy 
both the illumination and user comfort requirements. 850 nm LEDs were found to be the 
most optimal choice due to their ability to illuminate the player without causing 
discomfort during game play. 850nm is near-infrared and only partially visible to the 
player, but it is reliably detected by the camera as illumination.[7] These comparisons 
are summarized in table 3.15. During the camera selection process, it was important to 
find a camera that did not include an IR-cut filter to ensure that the 850nm LEDs would 
be picked up on screen.  
 
The choice between using individual IR LEDs versus LED strips was also considered 
but LED strips were quickly determined to be the most optimal solution due to their ease 
of integration and consistent IR output. Standard 12 V LED strips simplify power 
distribution compared to the more complex constant-current drivers needed for discrete 
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LEDs, aligning with the system’s power efficiency goals. They are also highly practical 
for testing because they can be easily modified or repositioned as needed. They allow 
for better uniform and even light coverage across the dance pad area, which supports 
consistent MediaPipe landmark  tracking. While their only downside is having slightly 
less beam-shaping flexibility, this factor is less important than cost, simplicity and 
performance, which is why LED strips ultimately outperform discrete individual LEDs in 
this design. 
 
 
Table 3.14 Illumination Method Comparison 
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Attribute RGB LEDs White LEDs 850nm IR LEDS 

Visibility to Player Fully visible Bright and visible Partially or mostly 
invisible 
 

Comfort / Glare Moderate (color 
shifting may 
distract) 

Potential discomfort 
in dark environment 

Comfortable (no 
glare) 

MediaPipe 
Compatibility 

Inconsistent under 
varied RGB output 

High contrast but 
could saturate 
camera 

Reliable for pose 
detection 

Power Efficiency  Lower ( color 
mixing requires 
more power 

Moderate High (simple 
constant voltage) 

Ease of Integration Moderate (requires 
careful color 
control) 

Easy Easy 12 V strips 

Camera 
Compatibility  

Compatible (RGB 
input) 

Compatible Compatible 
(requires no IR-cut 
filter) 

Beam Shaping/ 
Directionality 

Flexible with lenses 
or domes 

Fixed Slightly less flexible 
but evenly 
distributed 

Cost and 
Availability  

Moderate to High Low Moderate and 
widely available  

Chosen Option for 
S.T.E.P 

Rejected due to 
inconsistency  

Rejected due to 
glare 

Selected for 
performance and 
comfort 



 

Table 3.15 Comparison of IR illumination Formats: Individual LEDs vs. LED Strips 
 
Attribute Individual 850nm IR LEDs 850nm IR LED strips 

Integration Complexity  High (requires PCB design, 
precise alignment) 

Low (peel- and-stick, 
plug-and-play layout) 

Driver Circuitry Requires constant-current 
sources 

Runs off standard 12 V 
constant-voltage supply 

Light uniformity Potential hotspots, difficult 
to evenly space 

Even illumination across 
play area 

Reusability/ Testing Difficult to reconfigure 
during prototyping 

Easily repositioned or cut 
to fit 

Beam Shaping Control Higher flexibility with 
lenses or reflectors 

Lower flexibility. Fixed 
emission angle 

Cost and availability Often lower per LED but 
adds up with drivers and 
PCB work 

Cost-effective for large 
areas widely available 

Chosen Format for S.T.E.P Rejected due to complexity 
and inconsistency 

Selected for simplicity, 
uniformity, and speed of 
setup 

 

3.7.1 LED Part Comparison 

The main selection criteria for these strips was their ability to provide sufficient radiant 
flux to support reliable MediaPipe detection, a wide beam angle near 120°for consistent 
coverage, and moderate power consumption to fit within the available 12 V supply 
constraints. Three candidates were compared and their specifications were summarized 
in Table 3.16. The Waveform IRFlex 850nm, DC12/24V 5050 SMD strip, and the 360 
Digital signature 3528 SMD strip. The 5050 SMD option provides both high output and a 
moderate price point for 60 LEDs per meter and a power draw of approximately 14.4 
W/m. 3528 SMD offers lower power consumption but has a higher price per reel making 
it less ideal. The 2835 SMD strip provides the most LED density at 120 LED/m and has 
the lowest power draw of about 9.6W/m, making it the most premium candidate of the 
three at $55 per 5m.  
 
All three options maintain a wide beam angle near 120°, supporting robust coverage of 
the player’s body during movement. Based on these tradeoffs such as cost and power, 
the 3528 SMD strip was selected as the baseline for initial prototyping. This is due to its 
cost balance, radiant power, and easy 12 V integration with time-multiplexed control 

57 



 

zones. Final LED strip selection will be confirmed after prototype testing of illumination 
uniformity and camera sensitivity. 
 
Table 3.16 LED Strip comparison table 
 
Feature Waveform IRFlex 

850nm 
DC12/24V 360 Digital Signage  

LED Type 2835 SMD 5050 SMD 3528 SMD 

Beam Angle 120 120 120 

LED Density (/m) 120 60 60 

Power(W/m) 9.6  14.4 7.2 

Price ($) $55 $28.98 $45.89 
 
3.8 Embedded System Development Languages​
 
Our system will require software development both for the microcontroller unit (MCU) 
and the rhythm game interface. In this section, we evaluate the most suitable 
programming languages for each component based on criteria such as speed, ease of 
development, memory control, and hardware access. The goal is to identify the best 
language for programming our MCU and, if necessary, a separate language best suited 
for developing the rhythm game. 

3.8.1 C 

C is a low-level language most commonly used for programming MCUs. It provides 
direct access to hardware while offering a cleaner abstraction than assembly language. 
Because C compiles directly into machine code with minimal runtime overhead, it allows 
extremely fast execution and real-time responsiveness, which is critical for embedded 
applications like sensor reading or LED control. 
 
Unlike high-level languages, C has no garbage collection, safety checks, or virtual 
machines. Instead, the programmer is responsible for memory allocation and hardware 
interfacing. While this increases development complexity, it allows precise control over 
peripherals like GPIOs, ADCs, and timers. C is widely supported across virtually all 
microcontroller platforms, including Teensy, Arduino, STM32, and ESP32. Overall, C is 
not the easiest to learn, but it is the most efficient and reliable language for embedded 
development. 

58 



 

3.8.2 Python 

Python is a high-level, interpreted language known for its simplicity, readability, and 
rapid development. While it is not suitable for low-level embedded programming (due to 
memory and speed limitations), it is commonly used for PC-side applications, 
prototyping, and game development, especially when paired with frameworks like 
Pygame for rhythm games. 
 
In embedded systems, Python is occasionally used on SBCs like the Raspberry Pi, but 
not on MCUs like Teensy, where C or C++ are more appropriate. However, Python can 
be used to simulate or visualize data from the dance pad or build a simple game 
interface that responds to USB HID inputs from the MCU. Its vast ecosystem and ease 
of integration with USB devices make it a strong candidate for the rhythm game 
software, but not the microcontroller firmware. 

3.8.3 Java 

Java is another high-level language often used in application development, especially 
for cross-platform environments. Like Python, Java is not ideal for embedded MCU 
programming due to its reliance on the Java Virtual Machine (JVM), which adds 
significant overhead and lacks the direct hardware access needed for real-time control. 
 
However, Java can be used effectively for developing desktop-based rhythm games or 
user interfaces that communicate with the dance pad via USB. Java’s strong support for 
event-driven programming, GUI libraries (like JavaFX or Swing), and device input 
handling makes it a reasonable choice if the rhythm game requires more structure or 
modularity than Python might provide. Its portability and object-oriented architecture 
may be overkill for simple games but could benefit larger or more scalable systems. 

3.8.4 Embedded System Development Languages Selection 

We are using C language to program our Arduino Leonardo microcontroller because it 
offers the most efficient, direct, and low-overhead way to interact with the hardware 
components of our system, specifically the FSRs, RGB LEDs, and USB HID interface. C 
provides precise control over memory, peripherals, and timing, which is crucial for our 
real-time step detection and LED response requirements. Unlike higher-level 
languages, C allows us to write low-latency code that can directly manipulate GPIO 
pins, read analog signals from FSRs via ADC channels, and update LED states with 
minimal delay. 
 
Arduino Leonardo supports C (and C++) natively through the Arduino IDE, allowing us 
to easily configure the board for USB HID communication, which is essential for 
translating foot inputs into instant keyboard-like signals recognized by the game. Since 
our system is latency-sensitive and must respond with near-instant feedback for both 
impact and press-and-hold inputs, using C gives us the deterministic performance we 
need. Overall, C is the most appropriate language for programming the embedded side 
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of our dance pad system, offering speed, reliability, and full access to the hardware’s 
capabilities. 
 
Table 3.17 Top development languages for MCU comparison table 
 
Feature C Python Java 

Speed & 
Performance 

excellent​
(low overhead) 

poor for embedded,​
decent for PC apps 

moderate​
(JVM overhead) 

Ease of 
Development 

moderate very high high 

Memory Control manual automatic automatic 

Hardware Access direct access limited indirect 

Best Suited For embedded systems PC-side 
prototyping, rhythm 
game logic 

scalable PC 
applications, GUI 

 
3.9 Computer Vision 

3.9.1 Pose Estimation Techniques 

3.9.1.1 Classical Techniques 
 
Before the widespread adoption of deep learning, pose estimation was achieved 
through traditional computer vision methods, many of which relied on handcrafted 
features and rule-based pipelines. These classical techniques were computationally 
efficient and suitable for the hardware available at the time, but they came with strict 
environmental limitations and a lack of generalization across diverse scenes. 

One of the earliest and most intuitive techniques used in classical pose estimation was 
background subtraction. This method attempts to isolate the moving subject from a 
static background by identifying changes in color or brightness between frames. 
Typically, a “background model” is captured or assumed, and then each new frame is 
compared pixel-by-pixel to detect motion. Basic versions used simple frame 
differencing, while more advanced versions employed Gaussian Mixture Models 
(GMMs) to handle subtle lighting fluctuations or gradual background changes. In a 
constrained environment this method could effectively identify silhouettes or regions of 
interest, forming the basis for further analysis like gesture recognition or contour 
tracking. However, background subtraction quickly broke down in real-world scenarios. 
Environmental noise such as flickering lights, moving shadows, or dynamic 
backgrounds like waving trees introduced errors. Furthermore, it required the camera to 
be stationary, as even slight camera movement could disrupt the entire model. While it 
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was a useful tool for early motion tracking experiments, its fragility under real conditions 
made it impractical for generalized use, especially in games or public environments. 

 

Figure 3.6 Example of Background Subtraction with OpenCV 

Another classical technique that provided more temporal insight into motion was optical 
flow. Instead of comparing single frames against a background, optical flow analyzes 
the apparent movement of pixels between consecutive frames to estimate motion 
vectors. This technique is especially useful for capturing the direction and velocity of 
motion, making it ideal for analyzing limb movements or detecting walking and waving 
gestures. The two primary approaches being dense flow and sparse flow offered 
different trade-offs between resolution and performance. Optical flow has been used in 
robotics and video analysis to infer actions from continuous motion, and in some early 
gesture-controlled systems. However, it came with its own set of limitations. Large or 
fast movements often led to errors due to motion blur or discontinuities, and occlusion, 
when one part of the body hides another, posed a major challenge. Moreover, flow 
estimation becomes ambiguous in areas with uniform texture or lighting, where pixel 
intensity doesn't change enough to provide directional clues. In the context of 
multi-person scenes or complex poses, optical flow was insufficient on its own, often 
requiring additional heuristics or model-based constraints to be effective. 

Contour detection and shape matching techniques sought to extract body outlines by 
identifying edges and fitting known templates or convex hulls. These methods enabled 
rough body pose estimation but failed in the presence of overlapping limbs, varied 
clothing, or non-standard postures. Similarly, pose-from-silhouette techniques relied on 
the shape of a segmented figure to infer likely joint locations, using statistical models of 
human anatomy. These systems performed reasonably well for frontal or side views but 
were limited by the inherent ambiguity of silhouettes in 2D projections. 

Among classical methods, pictorial structures marked a significant conceptual shift by 
introducing a more structured way to represent human pose. Rather than analyzing 
motion or edges in isolation, they use a computer science graph-like representation 
where nodes correspond to body joints and edges represent limbs. Each part was 
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associated with a probability distribution describing its likely appearance, and the spatial 
relationships between parts were encoded through geometric constraints. The system 
would then search for the configuration that maximized the overall likelihood across the 
image, essentially solving an optimization problem to infer the most plausible pose. This 
approach was robust to some extent against partial occlusion and varying camera 
angles, making it more suitable than silhouette or contour-based methods for 
challenging environments. However, it came at a cost. The inference step was 
computationally expensive, especially for full-body models with many degrees of 
freedom. These systems also relied heavily on strong contrast and clean segmentation 
to reliably detect features in the first place. As a result, while pictorial structures 
provided a powerful theoretical foundation for understanding pose, their practical use 
was limited until more efficient algorithms and stronger feature representations emerged 
in the deep learning era.  

 

Figure 3.7 Graph representation of a typical pose for a human body 

A major step forward came with the introduction of the Microsoft Kinect in 2010, which 
helped bridge the gap between classical vision pipelines and modern learning-based 
systems. The Kinect utilized structured infrared light to capture depth data in addition to 
standard RGB imaging. This enabled accurate 3D skeletal tracking without requiring 
wearable sensors or markers. Microsoft’s implementation used machine learning 
decision forests trained to identify joint positions from depth images, allowing for 
real-time, multi-user tracking on modest consumer hardware such as the Xbox 360. 
Though highly influential, Kinect’s depth-based approach suffered from hardware 
limitations, including limited range, sunlight interference, and platform dependency. 

Despite their constraints, these classical techniques laid the groundwork for the 
learning-based methods that followed. They demonstrated the feasibility of markerless 
tracking and inspired early applications in gaming, gesture control, and 
human-computer interaction. The lessons learned from these systems informed the 
design of modern neural network architectures and dataset collection strategies used in 
today's pose estimation models. 
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3.9.2 Modern Techniques 

As hardware improved and large annotated datasets became available, convolutional 
neural networks (CNNs) emerged as the dominant paradigm for pose estimation. These 
models replaced handcrafted pipelines with data-driven learning, enabling greater 
robustness, scalability, and accuracy. 

The emergence of CNNs has drastically transformed the field of human pose 
estimation, enabling high-accuracy, real-time detection of key body joints from standard 
RGB imagery. Unlike classical techniques that relied on handcrafted features or 
background modeling, modern CNN-based systems can generalize to a wide variety of 
poses, environments, and occlusion conditions through extensive training on large-scale 
annotated datasets. 

One of the most influential convolutional neural network-based pose estimation 
frameworks is OpenPose[19], developed by the Carnegie Mellon Perceptual Computing 
Lab. OpenPose was the first open-source system capable of performing real-time, 
multi-person 2D pose estimation with relatively high accuracy. It uses a method called 
Part Affinity Fields, which predicts not only the positions of individual body key points 
such as wrists, elbows, and knees, but also the directional associations between these 
keypoints. This allows the system to effectively group detected joints into separate 
individuals, even when multiple people are present in the same scene or overlapping in 
view. 

While OpenPose set a major milestone in pose estimation research, its accuracy comes 
with significant computational demands. It typically requires a dedicated GPU in order to 
achieve real-time performance, and its performance degrades considerably on devices 
without powerful hardware. As a result, OpenPose is not well-suited for mobile, 
embedded, or browser-based environments where memory, power, and processing 
capabilities are limited. The framework is built on Caffe and makes extensive use of 
OpenCV for tasks such as image preprocessing, rendering keypoints, drawing skeletal 
lines, and managing post processing routines. This design makes it modular and 
relatively easy to modify, but also heavy and resource-intensive compared to more 
modern, lightweight alternatives. 

In practice, many of the tasks handled by OpenPose’s post processing pipeline can be 
re-implemented with simpler code using OpenCV and basic geometric rules. For 
example, drawing connections between keypoints based on distance thresholds or 
grouping joints into a rough pose can be achieved using a few lines of logic, especially 
when used in combination with another library like MediaPipe to handle keypoint 
detection. This makes OpenPose seem unnecessarily complex for applications that only 
require basic gesture detection, such as identifying if someone is raising their hands, 
jumping, or standing still. 
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Figure 3.8 OpenPose working on a large amount of subjects 

In contrast to OpenPose, MediaPipe[21] Pose was developed by Google with an 
emphasis on speed, efficiency, and platform flexibility. It was designed to operate on 
low-powered devices without sacrificing too much accuracy. The system uses a 
two-stage convolutional neural network pipeline. First, it detects the region of interest 
around a person using a lightweight detector. Then, it applies a landmark model to 
predict thirty-three key points across the entire body, including finer details such as 
fingers, feet, and facial landmarks. 

What sets MediaPipe Pose apart is its ability to deliver real-time performance even on 
CPUs and embedded systems. It runs reliably on mobile phones, Raspberry Pi boards, 
and NVIDIA Jetson devices without the need for a dedicated GPU. Its modular 
architecture is built around a graph-based processing model, where each component in 
the pipeline is represented as a node. This allows developers to customize, replace, or 
extend parts of the pipeline, such as input normalization, inference logic, or output 
smoothing. 

In addition to its lightweight design, MediaPipe includes smoothing filters and motion 
tracking features that reduce jitter and increase temporal stability. This makes it 
especially suitable for applications involving fast movements or inconsistent lighting. 
Although it may not match OpenPose in multi-person detection or sub-pixel keypoint 
accuracy, its practical balance between speed, resource usage, and flexibility makes it 
an ideal choice for mobile games, real-time interaction, and low-latency gesture 
recognition. 
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OpenPose remains a powerful benchmark in academic and industrial settings where 
multi-person detection, fine-grained keypoint accuracy, and research flexibility are 
prioritized over efficiency. Its ability to consistently detect multiple overlapping subjects 
and produce detailed skeletons makes it valuable for high-end applications such as 
motion capture, live broadcasting, and scientific analysis. However, its reliance on GPU 
acceleration, heavy memory footprint, and large model size make it impractical for use 
in resource-constrained environments, such as mobile games or embedded systems. 
MediaPipe Pose offers a more balanced solution by maintaining reasonably high 
accuracy while optimizing for speed, modularity, and ease of deployment. Its ability to 
operate smoothly on CPU-based systems allows developers to use it in real-time 
applications where latency must be minimized and where external hardware 
acceleration is not feasible. Furthermore, its graph-based architecture and wide platform 
support (including Android, iOS, and desktop) enable developers to prototype and 
iterate across a broad range of devices with minimal changes to the underlying 
codebase. 

 

Figure 3.9 Example prototyping of OpenCV and MediaPipe on Christopher Solanilla 

For scenarios demanding ultra-fast performance and even lighter computational 
demands, BlazePose[20] takes this optimization a step further. Its use of single-shot 
detection eliminates the need for separate region proposals or sequential processing 
steps, significantly reducing latency. Combined with model quantization and neural 
architecture search, BlazePose achieves performance that exceeds 30 frames per 
second on modern smartphones using only CPU resources. This makes it highly 
suitable for applications in fitness tracking, augmented reality (AR), and gesture-based 
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interfaces where responsiveness and battery efficiency are critical. Additionally, its 
prediction of 33 keypoints, including subtle facial and foot positions, enables more 
expressive pose understanding despite its lightweight design. The most intriguing 
feature of BlazePose is that it is able to predict within a high accuracy x, y, and z 
coordinates for problems that may require 3D location.  

In the context of our rhythm-based game, where low latency, reliable body tracking, and 
smooth animations are essential for gameplay responsiveness, both MediaPipe Pose 
and BlazePose represent ideal choices. Given that the game must run on commodity 
hardware without access to high-end GPUs, the selection of a lightweight model is not 
only a technical preference but a hard requirement. MediaPipe’s modular pipeline offers 
a flexible starting point for tuning the pipeline to match the rhythm game’s input 
structure and timing constraints, while BlazePose introduces an opportunity to push 
performance boundaries even further if frame rate becomes a bottleneck. These models 
align well with the constraints of real-time play and allow us to maintain a consistent 
experience across platforms, from desktops to embedded consoles. 

 

Figure 3.10 BlazePose demonstrating high performant pose tracking capabilities with 3 
dimensions 
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3.9.3 Computer Vision Library Selection 

After evaluating several options for implementing pose detection and real-time 
vision-based input, we have selected MediaPipe and OpenCV as the primary libraries 
for our computer vision subsystem. This decision reflects both technical capabilities and 
our prior development experience. 
 
MediaPipe, developed by Google, offers a lightweight and efficient pose estimation 
pipeline that can run on commodity hardware, including embedded systems such as the 
Jetson Nano. It supports real-time inference with acceptable latency, making it suitable 
for our rhythm game's timing-sensitive requirements. MediaPipe provides prebuilt 
models such as BlazePose, which can detect and track 33 body landmarks with a 
balance of accuracy and speed. Its modular graph-based architecture allows 
customization of the processing pipeline, enabling us to skip unused stages and 
fine-tune performance parameters as needed. 
 
OpenCV complements MediaPipe by offering a wide range of image processing utilities, 
camera input handling, and matrix operations that are useful for gesture classification 
and data smoothing. It also provides tools for visualization, geometric transformations, 
and real-time filtering, all of which are valuable during debugging and refinement of the 
pose recognition system. 
 
Our previous work with these libraries in related projects, such as a pose-driven 
accessibility tool, has shown that they are reliable, portable, and efficient when compiled 
natively in C++ using Bazel. By combining MediaPipe’s pose estimation models with 
OpenCV’s low-level processing capabilities, we avoid the need to train models from 
scratch and instead benefit from a well-supported and mature ecosystem. 
 
Table 3.18 Comparison table of different computer vision technology​
 

Tool Speed Accuracy Hardware 
Requirement 

Multi-person 
Support 

Best Use Case 

OpenCV Fast Low to 
Medium 

Works on any 
CPU 

No Basic gesture 
logic, simple 
demos 

OpenPose Slow High Requires 
powerful GPU 

Yes Research, 
motion capture 
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MediaPipe Fast Medium 
to High 

Runs on 
CPU/mobile 

No Mobile apps, 
real-time 
interaction 

BlazePose Very 
Fast 

Medium Optimized for 
CPUs 

No Fitness apps, 
AR, fast input 

​
 

3.9.4 Prototyping with MediaPipe and OpenCV 

 
To better understand the practical limitations and advantages of MediaPipe Pose, early 
prototyping work was conducted prior to this project using a custom-built C++ 
application developed for a separate accessibility-focused project. This project, titled 
Body Language Detector, was created as part of a hackathon hosted by my workplace. 
Its goal was to explore the use of computer vision in assisting visually impaired users by 
interpreting body language in real time. The application used a webcam feed to identify 
and analyze nonverbal cues, such as hand gestures and body posture, and translate 
these visual signals into auditory or textual feedback. The project aimed to give blind or 
low-vision users more access to subtle social signals that are typically communicated 
without speech. 

To meet the performance requirements of real-time interaction, the application was 
developed in C++ and used GTK for the graphical interface. This allowed for a native, 
low-overhead UI that could display pose information and system feedback without 
introducing latency. OpenCV was used to handle image processing and visualization 
tasks, while MediaPipe Pose provided the backbone for keypoint detection. Rather than 
relying on Python, which would have simplified development but introduced 
performance overhead, the entire pipeline was compiled using Bazel to ensure smooth 
operation on Linux systems. Particular care was taken to support CPU-only inference, 
making the program compatible with resource-constrained environments such as 
embedded systems or older computers. The system was tested on a Gentoo-based 
Linux setup, demonstrating stable performance and reliable keypoint detection without 
the need for external GPU acceleration. 

As seen in Figure 3.9, the prototype successfully tracked the user’s full-body pose using 
a standard webcam. Landmarks such as the shoulders, elbows, knees, and wrists were 
recognized in real time, and gesture logic was applied by calculating the relative 
distances and angles between these points. For example, the application could detect 
whether a person had raised both arms, crossed their arms, or shifted their weight to 
one side. These features allowed for basic pose classification and helped shape an 
understanding of what kinds of gestures could be reliably detected with lightweight pose 
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estimation frameworks. The experience of building gesture classifiers using simple 
geometric heuristics informed the rhythm game’s input design, where fast, unambiguous 
pose recognition is essential for gameplay accuracy and responsiveness. 

The project is available on a public GitHub repository and includes build instructions, 
MediaPipe submodules, and example code for evaluating gestures using OpenCV and 
landmark data. Although the original purpose of the tool was to improve accessibility for 
users with vision impairments, the prototyping process provided valuable insights into 
the deployment of real-time pose estimation systems on constrained hardware. 
Specifically, it helped highlight the trade-offs between model complexity and 
responsiveness, and demonstrated the effectiveness of MediaPipe's filters and tracking 
logic in noisy or unpredictable environments. These lessons directly informed the 
technical direction of the project. Both offer reliable, low-latency pose estimation that is 
well-suited for interactive applications running on systems without high-end graphics 
hardware. 

3.9.5 Considerations for Embedded Systems 

Although the primary development and testing of the rhythm game is conducted on 
desktop-class hardware such as gaming laptops or PCs, a long-term stretch goal of this 
project is to deploy the system on an embedded platform such as the NVIDIA Jetson 
Nano. This would allow the game to run as a standalone unit with integrated computer 
vision, enabling a more portable and self-contained experience. While not required for 
the core project deliverables, the embedded deployment scenario has been considered 
throughout the design process to ensure future compatibility and ease of migration. 
Achieving this goal introduces a number of technical constraints, particularly related to 
computing power, memory, and thermal management that must be accounted for in 
both the game engine and pose estimation pipeline. 

3.9.5.1 Hardware Capabilities of the Jetson Nano 
 
The NVIDIA Jetson Nano serves as a compact and cost-effective embedded computing 
platform aimed at enabling edge AI applications. It is built around a quad-core ARM 
Cortex-A57 CPU operating at up to 1.43 GHz, paired with a 128-core Maxwell GPU 
capable of executing parallel computations required by deep learning inference. The 
board is equipped with 4 GB of LPDDR4 memory, which is shared between the CPU 
and GPU, making memory contention a critical factor in system performance. This 
unified memory architecture reduces the overhead of copying data between processors 
but also introduces constraints when both the vision pipeline and the game engine are 
competing for memory bandwidth and capacity. 
 
Despite its modest specifications compared to desktop-class GPUs or higher-tier Jetson 
modules such as the TX2 or Xavier NX, the Nano is capable of running real-time 
inference workloads when models are properly optimized. However, it cannot support 
large-scale convolutional neural networks without suffering from memory exhaustion, 
cache contention, or reduced throughput. Pose estimation systems that rely on deep 
neural networks, particularly those involving multiple stacked layers or high-resolution 
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heatmaps, can quickly push the Jetson Nano to its limits. OpenPose, for example, 
typically requires over 2 GB of RAM just for model inference at full resolution, and relies 
on multi-branch processing stages to estimate keypoints and limb associations. These 
demands make it infeasible to deploy OpenPose in its standard form without significant 
pruning, quantization, and architectural simplification. Even in highly constrained 
configurations, OpenPose achieves only 3 to 5 frames per second on the Jetson Nano, 
rendering it unsuitable for real-time interactive use in latency-sensitive applications like 
rhythm games. 
 
In contrast, lightweight alternatives such as MediaPipe's BlazePose or Pose models are 
specifically designed to operate under embedded constraints. MediaPipe relies on a 
streamlined architecture that detects a single person per frame using a detector-tracker 
approach, typically involving an initial region-of-interest (ROI) proposal followed by a 
landmark regression stage. These stages are implemented as modular nodes within a 
dataflow graph that can be reconfigured or pruned depending on the use case. By 
reducing input resolution, disabling optional filters, and leveraging fixed-point arithmetic, 
the MediaPipe pipeline can be tuned to achieve 15 to 25 frames per second on the 
Jetson Nano, even when running alongside other processes such as camera capture 
and basic game logic. 
 
Furthermore, the Jetson Nano’s GPU can accelerate some portions of the pipeline 
through CUDA, though MediaPipe does not natively integrate with NVIDIA TensorRT, 
which limits the ability to fully offload inference from the CPU unless custom GPU 
kernels are developed. Nevertheless, the combination of a streamlined pose estimation 
model, configurable processing graph, and low-memory footprint makes MediaPipe a 
viable candidate for real-time single-user gesture recognition on this hardware platform. 

3.9.5.2 Software Stack and Runtime Optimization 

Computer vision applications on the Jetson Nano are typically developed using the 
NVIDIA JetPack SDK, which includes CUDA for GPU computation, cuDNN for deep 
learning operations, and TensorRT for inference optimization. While these tools are 
powerful, they are not directly compatible with every pose estimation framework. 
MediaPipe, for example, is not natively integrated with TensorRT and instead relies 
primarily on CPU inference or custom GPU pipelines. This can restrict its ability to fully 
leverage the Nano's GPU unless a custom build is created and compiled specifically for 
Jetson’s architecture. In contrast, OpenPose requires significant manual configuration to 
function on the Jetson Nano. This includes aligning CUDA versions, recompiling 
OpenCV with GPU support, and configuring swap space to avoid out-of-memory 
crashes. These dependencies and the resulting fragility of the system make OpenPose 
impractical for a rhythm game targeting consistent frame rates and predictable behavior. 

MediaPipe provides a more stable and lightweight alternative. It offers precompiled 
binaries for both Python and C++ that support CPU inference, and its modular 
graph-based processing structure allows developers to disable optional components to 
reduce resource consumption. When paired with inference backends such as 
TensorFlow Lite or the ONNX Runtime, MediaPipe can run efficiently on the Jetson 
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Nano with minimal adjustments. The flexibility of this architecture is particularly 
advantageous when attempting to tailor the pose detection pipeline to balance latency, 
precision, and power usage. 

3.9.5.3 Thermal and Power Management Constraints 
​
In embedded systems development, particularly those involving computer vision 
workloads, power consumption and heat generation become critical engineering 
concerns that must be addressed early in the design process. The NVIDIA Jetson Nano 
provides two selectable power modes: a default 5-watt mode and a more 
performance-oriented 10-watt mode, which requires a barrel-jack power supply for 
stable operation. While enabling the higher power mode improves the responsiveness 
of both neural network inference and general system tasks, it also introduces higher 
thermal output, which can become problematic in the absence of sufficient cooling 
mechanisms. Continuous execution of convolutional neural network models, such as 
those used for pose estimation, alongside a concurrently running rhythm game engine, 
places sustained computational stress on the device, increasing the risk of thermal 
throttling if the system exceeds its safe temperature thresholds. 

To mitigate thermal buildup and avoid performance degradation over time, the Jetson 
Nano requires active cooling solutions such as compact fans or aluminum heatsinks. 
Even with such additions, software design must complement the hardware limitations by 
adopting strategies that minimize unnecessary computational overhead. For instance, 
reducing the frequency of camera frame polling or selectively enabling vision processing 
only during gameplay segments that require it can dramatically lower heat output. The 
rhythm game being developed does not rely on continuous full-body pose monitoring at 
all times; instead, it only requires pose classification during specific gameplay prompts 
that challenge the player to perform a particular movement. This creates an opportunity 
to disable or suspend the pose estimation system during periods when it is not in use, 
thereby reducing CPU and GPU workload and allowing the device to operate in a 
lower-power state for the majority of gameplay. 

Such an approach aligns well with the real-time demands of rhythm games, where pose 
detection can be activated just prior to a prompt and then evaluated in a short time 
window before being deactivated again. This intermittent activation pattern not only 
supports power savings but also simplifies thermal management, since the vision 
pipeline is no longer running continuously in the background. Moreover, additional 
efficiency can be gained by limiting the input resolution of the camera, lowering the 
target frame rate for pose estimation to around 15 frames per second, or batching 
non-time-critical processing tasks so they execute during quieter moments of gameplay. 
These strategies allow for more predictable thermal behavior and reduce the likelihood 
of the device reaching critical temperatures that trigger throttling or system instability 

3.9.5.4 Game Engine Integration and Resource Synchronization 

The rhythm game is being developed using the Godot Engine, which introduces 
additional integration considerations. Godot allows for C++ extensions through 

71 



 

GDExtension or GDNative, making it possible to incorporate MediaPipe's C++ API 
directly into the game. However, careful synchronization between the engine and the 
pose estimation system is critical. Since both the game and the pose detector may 
require access to OpenGL contexts or video memory, concurrent usage can result in 
resource contention or graphical glitches if not managed properly. To avoid such 
conflicts, pose estimation should be executed in a dedicated thread or separate 
process. Pose data can then be shared with the game engine using inter-process 
communication or memory-mapped files, ensuring that Godot can operate smoothly 
without interruptions caused by the vision pipeline. 

This architectural decoupling also helps to minimize the impact of intermittent 
performance drops in the vision system. Since pose detection and gameplay operate 
semi-independently, short delays in processing frames do not immediately disrupt game 
logic. Instead, previously detected poses can be held until the next update cycle, 
maintaining consistency for gameplay elements that rely on accurate gesture input. 

3.9.5.5 Memory Footprint and Latency Targets 

The Jetson Nano’s 4 GB of RAM must support the operating system, the game engine, 
camera buffering, model inference, and other runtime operations. MediaPipe’s pose 
detection typically consumes between 100 and 200 megabytes of memory, depending 
on image resolution and whether smoothing filters are enabled. Additional RAM is used 
by the video capture pipeline, graphical assets, and internal Godot processes. Without 
proper profiling, it is easy to overcommit memory and cause performance to degrade 
unpredictably. 

For rhythm-based gameplay, responsiveness is crucial. The full pipeline from camera 
input to pose interpretation and game response should ideally remain under 150 
milliseconds of latency. Delays beyond this threshold can disrupt the timing-sensitive 
nature of rhythm gameplay and break player immersion. Achieving this target requires 
efficient memory management, parallelization of processing stages, and reduction of 
unnecessary overhead in both vision and game logic subsystems. 

3.9.5.6 Summary and Design Tradeoffs 

Based on the platform analysis, MediaPipe remains the most viable pose estimation 
solution for the NVIDIA Jetson Nano. It balances performance, configurability, and 
platform compatibility in a way that suits the needs of embedded game development. 
While OpenPose offers more detailed multi-person tracking, its memory requirements 
and complex setup disqualify it from practical use in this environment. BlazePose, as an 
extension of the MediaPipe ecosystem, provides an additional fallback option in cases 
where even greater inference speed is necessary or if resource usage exceeds 
acceptable thresholds. By carefully managing resource allocation, thermal conditions, 
and runtime behavior, it is possible to build a responsive and reliable rhythm game 
experience that leverages pose estimation on embedded hardware without sacrificing 
performance. 
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3.9.6 Programming Languages for Game and Computer Vision 

The selection of programming languages for this project plays a central role in shaping 
both the development workflow and the real-time performance of the computer vision 
and game engine components. Given the nature of embedded systems and the 
integration of computer vision models for pose detection, careful language choices must 
be made that reflect both the technical demands of the system and the development 
constraints faced by the team. 

For the computer vision subsystem, both C/C++ and Python are widely adopted in the 
field and are supported by key libraries such as OpenCV and MediaPipe. Python offers 
a fast and accessible prototyping experience due to its dynamic typing, extensive library 
ecosystem, and concise syntax. MediaPipe, in particular, provides precompiled Python 
wheels that allow for rapid experimentation and integration with OpenCV, making it an 
ideal language for early-stage development and algorithm testing. However, Python’s 
interpreted nature and higher runtime overhead make it less suitable for 
performance-critical or resource-constrained deployments, especially on embedded 
hardware like the Jetson Nano. 

In contrast, C/C++ offers significant advantages in terms of execution speed, memory 
control, and portability, particularly for embedded and production environments. 
MediaPipe’s core is written in C++ using the Bazel build system, which provides high 
performance but also introduces greater complexity during compilation and integration. 
The C/C++ API grants lower-level access to graph construction, buffer management, 
and custom kernel development, enabling developers to fine-tune pipelines for optimal 
performance. However, setting up a MediaPipe C/C++ environment on Linux, especially 
for cross-compilation or GPU acceleration, can be challenging and may require in-depth 
knowledge of build systems and dependency management. 

Given the tradeoffs between flexibility and performance, many projects begin with 
Python for rapid prototyping before transitioning to C++ for deployment. However, due 
to prior experience working with MediaPipe, OpenCV, and embedded C++ 
development, we are able to bypass the initial Python prototyping phase and move 
directly into a C++ implementation. This decision allows us to focus our efforts on 
building a production-ready system from the outset while maintaining the performance 
and low-level control necessary for real-time computer vision on the Jetson Nano. 
Although Python remains a powerful tool for testing and experimentation, our familiarity 
with the C++ development pipeline enables faster integration, better performance 
tuning, and more efficient use of system resources. 

The rhythm game itself is being developed in the Godot Engine, which uses GDScript, a 
high-level, dynamically typed language with Python-like syntax, designed specifically for 
Godot’s architecture. While GDScript is expressive and well-integrated with Godot’s 
node system, it does not offer the low-level performance or external library compatibility 
needed for high-throughput computer vision. Therefore, GDScript will be used primarily 
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for game logic and UI, while pose estimation will be handled externally in C/C++ and 
communicated to the game engine via inter-process communication (IPC) or shared 
memory. If deeper integration becomes necessary, Godot supports C/C++ bindings 
through GDExtension, enabling MediaPipe’s C/C++ modules to interface directly with 
the engine while maintaining real-time performance. 

3.9.6.1 Evaluation Criteria 

The computer vision system in this rhythm-based dance game serves as an 
event-driven input mechanism rather than a continuously running subsystem. Its role is 
to detect specific player poses at designated moments defined by the game’s chart or 
music track. While it is not active at all times, it remains an essential component during 
gameplay segments that involve pose-based challenges. To function effectively in this 
context, the system must meet key requirements in terms of latency, accuracy, 
robustness, and integration. These criteria ensure the pose detection system can 
reliably support time-sensitive interactions without introducing disruptions to the player’s 
experience. 

3.9.6.2 Latency 

Timing is one of the most important aspects of rhythm game design. For players to feel 
connected to the beat and confident in their inputs, the delay between a physical 
gesture and the system’s recognition of that gesture must be imperceptible. For this 
application, the maximum allowable end-to-end latency is defined as 100 milliseconds. 
This measurement begins at the moment the camera captures a frame and ends when 
the pose data is successfully delivered to the game engine for evaluation. 

This latency budget includes image acquisition, any pre-processing applied to the 
frame, neural network inference for pose detection, post-processing steps like keypoint 
filtering or pose smoothing, and the transfer of results into the game logic. Delays 
beyond 100 milliseconds can create a noticeable disconnect between the player’s 
actions and the game’s response. At 150 milliseconds, players with strong rhythm 
sensitivity may perceive the system as being off-tempo or unresponsive. 

To minimize latency, the pose detection pipeline must use lightweight models such as 
BlazePose or a stripped-down version of MediaPipe Pose. Frame resolutions should be 
kept moderate, and smoothing filters should be configured for minimal delay. Where 
possible, inference should be performed asynchronously on a separate thread. 
Hardware acceleration through CUDA or TensorRT, if compatible, can further reduce 
inference time and help maintain a consistent frame rate. 

3.9.6.3 Accuracy 

Accurate pose recognition is required to ensure the system scores player input fairly 
and consistently. Errors in classification, including false positives where poses are 
detected incorrectly or false negatives where valid poses are missed, directly impact 
gameplay quality. Incorrect detections can result in dropped combos, missed prompts, 
or undeserved penalties, reducing player satisfaction and overall trust in the game. 
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To address this, the pose estimation system should be configured to detect only a small 
set of predefined poses used in gameplay. These can be manually defined or trained 
using a dataset that includes common variations. Confidence thresholds should be 
enforced to prevent low-quality predictions from being processed. Temporal validation, 
where poses must be held across multiple frames to register, can help eliminate 
flickering caused by brief or unstable detections. 

In scenarios where transfer learning is feasible, the pose detector can be fine-tuned 
using a small number of labeled examples that reflect the specific movement patterns 
and player behaviors expected in the game. This improves classification accuracy 
without the need to retrain an entire model from scratch. 

3.9.6.4 Robustness 

The game is expected to operate in a range of real-world conditions, meaning the vision 
system must be resilient to variability in lighting, background clutter, clothing, and 
camera positioning. Environments may include bedrooms, living rooms, classrooms, or 
arcades, each introducing different visual challenges. 

Lighting changes can introduce shadows or glare. Players may wear loose, patterned, 
or dark clothing that affects keypoint visibility. Camera placement may vary slightly in 
height, distance, or tilt. To maintain stability across these conditions, the pose estimation 
system must be robust. Models that are invariant to scale and orientation, particularly 
those using heat maps or landmark regression, perform better in uncontrolled 
environments. 

Testing should include augmenting the input video stream with artificial noise, 
brightness variation, and occlusion to evaluate the system's tolerance. Ideally, the pose 
detector should not require frequent recalibration and should support dynamic input 
normalization during runtime. 

3.9.6.5 Integration with the Game Engine 

In a rhythm-based game where player gestures are a core part of gameplay, the 
computer vision system must integrate cleanly with the game engine to avoid 
introducing delays, instability, or data inconsistency. The pose detection pipeline should 
operate in parallel with the main game loop, allowing the game engine to remain 
responsive and frame-accurate even under high processing load. 

A practical approach is to run the vision system in a dedicated thread or as a separate 
process. This design reduces the likelihood of memory contention and helps isolate 
crashes or slowdowns in the vision pipeline from the rest of the game. Data such as 
keypoint coordinates, joint angles, or classified pose states can be communicated 
through shared memory buffers, local sockets, or lightweight message-passing 
protocols. 

The interface between the vision module and the game logic should be structured and 
minimal. Pose data should arrive in a predictable format with consistent timing to allow 
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the game engine to make real-time decisions, such as triggering animations, updating 
score counters, or initiating visual effects. Synchronization mechanisms such as frame 
counters, time stamps, or event queues can help ensure that pose detections are 
correctly matched to the corresponding frames of gameplay. When evaluating different 
CV pipelines, attention should be paid to their ability to support such integration models. 
Systems that allow for modular runtime graphs, asynchronous processing, and efficient 
memory management are typically better suited for integration in real-time game 
environments. 

3.10 Game Engines 

3.10.1 Godot 

Godot is a very useful game engine that is beginner friendly, is open source, and has a 
lot of documentation as to how to use each function available in Godot. Furthermore 
due to Godot being open source, there are a lot of third party tutorials and walkthroughs 
regarding Godot teaching and guiding users how to accomplish various tasks for 
different types of games. These tutorials include rhythm games which is what we will be 
working on. 
 
Godot’s game engine seems very easy to not only install, but also use once it has 
already been installed. Godot’s ability to create various scenes, that of which hold a 
variety of assets such as sprites, nodes, sound, animations and other useful assets 
seamlessly make it very simple to use. Godot’s user interface also is very simple to 
understand as one does not become overwhelmed. 
 
Godot also has its own scripting language called GDScript, which is very similar to 
Python which is used to be able to change various aspects of each object being made. 
Due to Godot’s scripting language being based off of python, GDScript is a comfortable 
language to understand especially for game scripting beginners who do not have a lot of 
programming experience, specifically users without prior game design programming 
knowledge. Through using GDScript, there are various functionalities that can be done 
using it such as changing the positioning of an object or sprite across the y-axis or 
x-axis which we will be using for the notes that will follow the beat. Another attribute that 
can be changed using GDScript, are the colors of the objects after a certain button(s) 
is/are pressed which we will be also using for the color changes of the arrows when 
they are pressed. 
 
Another fantastic feature that Godot has, is the compatibility mode that is used when 
creating our project. Due to us having a microcontroller that will not have as much 
computing power as a modern computer would have, having this as a feature will lower 
the load that the microcontroller would need to output. We also have a member who has 
used Godot in the past and due to their experience with Godot we had this option as a 
priority, however we checked other sources as well to test which would be best for the 
objective we are trying to complete. 
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Godot’s interface is very simple to understand. The nodes that will be on a specific 
scene is located on the top left side where the scene tab is, the assets that are 
implemented throughout the entire project will be located right below that in the file 
system tab, and when clicking on a specific node, their properties will be located on the 
right side in the inspector tab. 
 

 
 

Figure 3.11 Godot default interface 
 
Scene Tab 
 
The scene tab is located by default on the top left  of the Godot’s user interface. The 
scene tab hosts all of the different nodes that are located on the specific scene that is 
selected. These nodes that can be added to the scene could range from different 
sprites, to different types of polygons some of which can add collision detection, and 
even audio files that can be played while the scene is being played. Afterwards, once all 
the different nodes are placed on the scene selected, one could add a script onto each 
of those individual nodes that allows modifications to the objects.  
 
These modifications could range from the color of the polygon, the position of the sprite, 
or even a custom property that one chooses to add to the object. Another way that 
script can be attached, is by attaching them to one of the scenes as a whole. Doing so 
will affect any and all objects that are inside the scene. This feature makes it easier to 
modify a scene as a whole rather than individually modifying each object that exists in 
the scene and makes the process seamless.The scene tab is very useful to keep one 
organized as to what is going on in the scene and be able to see where everything is 
positioned.  
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Figure 3.12 Scene Tab 
 
File System Tab 
 
The file system holds all of the assets that are needed for the project. This includes any 
scripts that are being run, any scenes that are made, any sprites that are imported, and 
much more. 
 
The file system tab also allows for the creation of various folders for better organization 
for the project. Having multiple assets be bunched up makes working on it confusing, 
however utilizing the file system the folders make it easier to search for a specific group 
of assets such as one for how an arrow functions or searching for how the menu 
interface is set up, makes it seamless to update certain assets when needed. 
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Figure 3.13 FileSystem Tab 
Inspector Tab 
 
The inspector tab holds all the information in regards to a certain object that is being 
highlighted. Whether that be an imported sprite, a custom made polygon that has the 
collision feature attached to it, or even an audio source that needs to play music, the 
inspector tab will have that information stored for users to be able to make modifications 
manually to certain attributes. 
 
For example, users can decide that they would like to change the positioning of a 
certain sprite or polygon, under the transform dropdown one could access the various 
transformations that one could make such as moving across the x-axis or move across 
the y-axis. Users can also decide that they would like to rotate an object a certain way, 
this can also be done in the transform section. 
 
There are many other attributes that users can add to the object selected through the 
inspector tab such as scripts that were mentioned before. 
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Figure 3.14 Inspector Tab 

3.10.2 Unity 

Unity is another game engine that exists that could be used to make 2D games. Unity 
however is more focused on 3D games rather than 2D games. Some features such as 
the Tilemap system, the SpriteShape, and pixel-perfect rendering exist that could help 
us create our 2D rhythm game that we are trying to accomplish.  
 
Unity also offers audio synchronization tools and a timeline that could make it easier to 
have both the player actions along with the musical beats to be in tune, which is a key 
factor in terms of how the game should function while it is running.  
 
The downside of using Unity, is that for scripting, it uses a language called C# which is a 
quite advanced language to use and isn't a very beginner friendly scripting language for 
game building. Even though it is a very powerful language to learn, its learning curve is 
very high without prior experience using the language.  
 
Furthermore, due to how large unity is in terms of their features, it becomes very 
overwhelming understanding what unity has in store vs what it does not have in store. 
After opening it for the first time, Unity has a variety of libraries that come installed with 
it causing the engine to take a long time to open for the first time.  
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One good attribute that Unity has, is the built in version control called Unity Version 
Control. While it is a good feature to have, due to us being a group of 5 people, it would 
cost us an additional $14 monthly to use their built in system.  
 

 
 

Figure 3.15 Unity default 3D interface 
 

 
 

Figure 3.16 Unity default 2D interface 
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In Unity, users are able to change between the 3D version as mentioned before and a 
2D version. While in the 3D version you are able to manipulate various objects needed 
in the X, Y, and Z directions, the 2D version only allows manipulations in a two 
dimensional space. The main differences between the two different versions are the 
objects that one can add to either version. In a two dimensional space any basic shape 
can be added such as circles, squares, and other 2D objects. This also includes spites 
and other assets that are two dimensional. In the figure there is an empty newly created 
project that added the two dimensional camera that is able to be moved around.  
 
 
Hierarchy Tab and Inspector Tab 
 

The Hierarchy Tab in Unity, similar to Godot’s Scene Tab, is located by default on the 
left side of the Unity Editor interface. It serves as a structural view of all the game 
objects present in the current scene. These objects are organized in a parent-child 
relationship, allowing users to easily manage and navigate complex scene structures. 
From this tab, users can create new game objects, delete existing ones, and organize 
them to better structure gameplay logic or UI layers. 

On the other hand, the Inspector Tab, found on the right side of the Unity interface, 
displays detailed information and configurable properties for the object currently 
selected in the Hierarchy. Just like in Godot, users can manipulate position, rotation, 
scale, and visibility, but Unity's inspector also provides deeper customization through 
components. Every object in Unity can be made functional by attaching components like 
Colliders, Rigidbodies, UI elements, AudioSources, and more. 

One of the most powerful features of the Inspector Tab is the ability to attach custom C# 
scripts. These scripts define behaviors and can interact with other game objects and 
systems. Although Unity’s scripting system offers flexibility and power, it comes with a 
steeper learning curve—especially for beginners. Understanding how different built-in 
methods (like Start(), Update(), or OnTriggerEnter()) interact requires time and practice. 
Despite this, the Inspector’s modular design makes it easy to prototype features by 
mixing visual tools with coded logic. 

Overall, the Hierarchy and Inspector tabs in Unity offer a robust combination of scene 
organization and detailed object manipulation, providing developers with both clarity and 
control throughout the development process. 
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Figure 3.17 Unity Hierarchy and Inspector Tabs 

 
Project Tab 
 
Similar to Godot, Unity has the “Project Tab” where similar to Godot’s file system holds 
all of the assets that are needed for the project. Inside the project tab, any scripts that 
are being run and any assets that are imported though the Unity Asset Store can be 
found here. The project tab is very useful as when double clicking an object from the 
inspector tab, will instantly highlight and direct to you the folder from the project tab it is 
in. 
 
The project tab also allows for the creation of various folders for better organization for 
the project. For example if there are multiple assets that have similar characteristics, 
they can be all sorted into a single folder, making it a great organization tool for cleaning 
up users workspace.​
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Figure 3.18 Unity Project Tab 

3.10.3 Unreal Engine 

Unreal Engine is a game engine that one can install using the Epic Games launcher 
created by Epic Games themselves that is mainly used for 3D games. They are mostly 
known for being used for AAA game development which are games that are very large 
with many assets attached to the game mostly made in the 3D space. However, Unreal 
Engine has added the capabilities to create 2D games through their “Paper 2D” 
functionality allowing to only see the space in the 2D perspective rather than adding the 
Z-direction. This functionality allows 2D sprites to be made and other 2D assets that 
could be used for a 2D game being developed on their game engine.  
 
One of the downsides to using Unreal Engine however, is that although it has tutorials 
on how to create games, all of the ones that they offer on their website are mostly 
geared towards those who are aiming to create a 3D game. Since we are making a 2D 
game, those tutorials do not work for us entirely. There are however some aspects of 
those tutorials that we could use such as their scripting of sprites and event handling. 
Unreal Engine also has the same problem that Unity does which is the load that it has 
on the system.  
 

 
 

Figure 3.19 Unity Hierarchy and Inspector Tabs 
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In order to activate the 2D paper form there is a very complicated process in order for 
the 2D paper form to appear, however, this doesn't make the entire scene two 
dimensional, instead it makes the sprite themselves two dimensional and not the space 
that they are in themselves. 
 
This two dimensional paper form although could be useful, since it is really only useful 
for three dimensional space, it would not be useful for us since we only want to work in 
two dimensions. 
 
A positive aspect of using Unreal Engine is that it has its own version control feature 
that will be talked about later on. However although that is just one positive aspect, 
there are many drawbacks that would not be  
 
Unreal although a popular option as a game engine would not be a good idea in a two 
dimensional space due to their lack of support for ease of use especially in the 2d space 
that we would need for creating our project. 
 

3.10.4 Version Control 

3.10.4.1 Github 
 
Github is a very popular version control manager that allows multiple people to work on 
a project at a given time. By using their Git Repositories, users can access all of their 
uploaded documents through their cloud service. This allows for users to work on one 
computer, upload any and all documents or files they need for their project, and be able 
to work on another computer and retrieve all the documents they need to continue 
working.  
 
Furthermore, since Github is indeed a version control manager, it is able to retrieve past 
versions of projects in the case that a mistake was made that caused the entire project 
as a whole to crash. This allows restoring the project to a previous state that it was in 
before the crash occurred thus recuperating the past stable needed.  
 
However one must be careful when doing so as if not done so properly could be 
detrimental causing hours if not days of progress to be lost. 
 
Another useful feature that github has is its ability to work on separate branches than 
the main one being used. What these branches allow one to do is work on a specific 
portion of the project separately using the same main project source code and make 
modifications without modifying the main source code. This is extremely useful for us 
due to the separate portions that we will be working on and not wanting to make 
mistakes that others would have to fix later on.  
 
To add on to the branch, users can also merge projects together, allowing for branches 
that one worked on to be combined with the main project code and be updated. This 
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allows for example one person to make changes to the main project code based on one 
feature, and once done, the user is able to merge with the main code that others have 
access to as well. One must be very careful with merging as there is a possibility of 
overrides that can cause projects to crash, so one must be sure that the merging 
procedure is done correctly so that mistakes do not appear at a later time. 
 
Github has other resources such as its Large File Storage System and their Locking 
mechanism as well. Both of these resources will be integral to our project especially 
with having large files that if not properly maintained, could cause consequences when 
making future merges.  
 
Locking allows us to be able to disallow any changes to documents unless they are 
unlocked, this allows for us to work on the project together without having the need to 
worry about accidentally making changes to the wrong file or overriding any other work 
that other group members have progressed on and that work being lost for good. 
 

3.10.4.2 Perforce 
 
When it comes to the gaming industry, the most common version control software used 
in the industry is actually Perforce. Perforce has a different kind of paradigm when it 
comes to version control with the use of its depots and streams.  
 
Unlike git, it does not like to merge files or handle conflicts but rather focuses on having 
a system where only certain users are able to make changes at a time with the use of 
locks.  
By default everything in a perforce project is read only, and when a user needs to make 
changes to their project they have to request to unlock it which can only be done if no 
one else has the key to that lock for the file.  
 
The concept of locking for version control becomes especially useful for video game 
development due to the nature of binary files. Binary files are large files that humans are 
not able to properly differentiate changes from with examples being files such as 
images, videos, or 3D object files. While it may be possible to quickly see the difference 
from one change of file that contains code for programming and thus merge both 
existing changes, it would be nearly impossible to combine something like a game asset 
where two people ended up working on the same asset making their own unique 
changes.  
 
Due to this, perforce enforces a strict policy on what files a person is able to edit at a 
given time, especially to prevent two people from editing a binary file.  
 
For our project, perforce is a strong contender for collaborating on the development of 
our video game software. Our game will include a lot of assets such as colorful notes 
represented by arrows, indicators for players to do a pose, UI assets for song selection, 
and map files for our songs. If two of us were to step on each other's toes and 
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accidentally both work on the same binary file, we would have to scrap either one or 
both of our work.  
 
Perforce would make this scenario never happen in the first place, but it is not without 
its own costs. For one, perforce is a paid service and requires hosting of some sort to 
get going, and having more than 5 people in a project requires a hefty monthly 
subscription.  
 
Additionally, Perforce is also a lot less intuitive for usual software engineers to 
understand and takes a lot of setup given the hosting process of it. Only one of our 
group members had any experience with perforce, and in the end an executive decision 
was made to avoid it all together due to the complicated nature of it. Instead we opted to 
go for a best of both worlds approach using git with file locking via a large-file-system.  
 
While not as robust as perforce, it at the very least will not allow commits to files with 
locks. Furthermore, it is not a huge issue at the moment to use git since we have at 
most two people actively working on the development of the video game.  
 
Perforce could be a potential addition to our project in the future if this project succeeds 
beyond expectations, but at the moment traditional git with large-file-system enabled will 
be enough.  
 

3.10.4.3 Unity Version Control 
 
Unity Version Control as previously mentioned is Unity’s built in version control system 
that allows for multiple users to access the project at any given time. With having the 
first 3 users free, then afterwards it will cost an extra $7 a month per additional user that 
one would like to add to the project.  
 
One of the positives of using Unity Version Control is that one would not need to rely on 
external Version Control programs such as Git or Perforce. Having to rely on external 
software at times can be slightly deterring due to the fact that if the service goes down, 
it could cause issues on continuing to work since users would not be able to update 
their work in a timely manner while when using Unity Version Control, it goes directly off 
the users machine and can be updated at a later time without the loss of work being 
made.  
 
One major drawback of using Unity Version Control is that in order to use it we are 
forced to use Unity as our game engine of choice. While Unity is a good game engine, 
there is a possibility that there are other game engines that we prefer to use. 
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3.10.4.4 Unreal Engine Version Control 
 
Unreal Engine, similar to Unity, has its own built-in version control system. This is very 
helpful since if multiple people want to work on the project at any given time, users are 
indeed able to do so and are able to modify files and other assets needed as they 
please as long as the merging process of the multiple files are done correctly and 
overriding certain aspects of the project as a whole do not happen. 
 
Like Unity, one of the positives of using Unreal Engine’s built-in version control is that 
users of Unreal Engine would not need to rely on Git or Perforce as their choice of 
version control software. 
 
One major drawback of using Unreal Engine’s built-in version control is that in order to 
use it we are forced to use Unreal Engine as our game engine of choice. While Unreal 
Engine is a good game engine to use in general, for our specific project, we have not 
determined yet if Unreal will be our game engine of choice. 
 

3.10.5 Game Engines Comparison 

After comparing the three different game engines, Godot will be the most suitable 
choice for developing our 2D rhythm game. Due to its open-source nature, lightweight 
installation process, and their intuitive user interface, causes Godot to become 
especially accessible for beginners. The scripting language that Godot has built in, 
GDScript, closely resembles Python, which lowers the learning curve for those users 
who do not have prior game development experience. Additionally, Godot has extensive 
documentation and community-made tutorials that are extremely useful , including those 
specific to rhythm games, which aligns perfectly with our project's goals. Unlike Unity 
and Unreal Engine, which are primarily designed for 3D games and can be 
overwhelming with their complex interfaces and heavier system requirements, Godot 
offers a streamlined development environment and even includes a compatibility mode 
ideal for microcontroller-based projects. Given our team's familiarity with Godot and its 
alignment with our technical needs and project scope, we have decided to move 
forward using Godot as our game engine. 
 
Table 3.19 Game engines comparison table 
 

Feature Game Engine 

Godot Unity Unreal Engine 

Primary Use Case 2D & 3D games 
(strong 2D 
support) 

Primarily 3D, 
supports 2D 

Primarily 3D, 
limited 2D via 
Paper2D 

Beginner Friendliness High Moderate Low 
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Scripting Language GDScript C# C++ or Blueprints 

Tutorial Availability Extensive, 
especially for 
2D/rhythm games 

Many, mostly 
general or 
3D-focused 

Mostly 3D tutorials 

Installation/Startup Lightweight, fast 
and simple 

Heavy install, 
slow to start 

Very heavy, Epic 
Games Launcher 
required 

UI/Workflow 
Complexity 

Simple and clean Complex, many 
default libraries 

Complex and 
feature-dense 

Audio/Timing Features Manual via 
scripting 

Built-in audio 
sync and timeline 
tools 

Available but 
requires additional 
setup 

Version Control 
Support 

External tools 
(e.g., Git) 

Built-in (costs 
extra for teams) 

External tools (e.g., 
Git) 

Open Source Yes No No 

Microcontroller 
Friendly 

Yes, has 
compatibility mode 

No No 

Best Use Case in 
Project 

Ideal for 2D rhythm 
game with limited 
resources 

Possible, but 
better for Unity 
experts 

Least suitable for 
2D rhythm game 
beginners 

3.10.6 Version Control Comparison 

Table 3.20 Version Control Comparison Table 
 

Game Engine Version Control 

Unity Version 
Control 

Unreal Engine 
Version Control Git Perforce 

Godot     

Unity     

Unreal Engine     
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After comparing the version control options that we had available, since we have 
decided to use Godot as our game engine of choice, we had the option to choose 
between Perforce and Git. Ultimately we have decided to use Git as our version control 
of choice due to its various features such as locking, large file storage system or LFS for 
short, as well as its ability to have multiple users work on the project and be able to 
upload their work by merging with existing files. 
 
As a result we have Godot and Git as our core game engine and version control 
systems to complete our goal with the dance rhythm game system we plan to create. 
 

4. Standards and Design Constraints 
Standard: IPC-2221A – Generic Standard on Printed Board Design  

The IPC-2221A, "Generic Standard on Printed Board Design," serves as the 
foundational standard for the design of printed circuit boards. Published by IPC, the 
global electronics industry association, this document establishes the generic 
requirements for the design of organic printed boards, from single-sided boards to 
complex multilayer structures. It provides a robust framework of rules and principles that 
govern nearly every aspect of PCB layout, ensuring that the final product is not only 
functional and reliable but also manufacturable. For any electronic design project, 
applying the principles of IPC-2221A is a critical step in translating a schematic diagram 
into a physically sound and dependable product. 

At its core, IPC-2221A is a guide for Design for Manufacturability. It creates a common 
language and a set of baseline requirements between the designer and the fabrication 
house. By establishing rules for spacing, feature sizes, and tolerances, the standard 
ensures that a design can be reliably produced using standard manufacturing 
processes, which helps to control costs, improve yields, and reduce production time. 
The standard also defines three performance classes based on the intended end-use 
environment, which dictates the stringency of the design rules. Class 1 is for general 
electronic products where the primary requirement is the function of the completed 
assembly. Class 2 is for dedicated service electronic products requiring high reliability 
and an extended service life, where uninterrupted service is desired but not critical. This 
is the target class for the dance pad project. Class 3 is for mission-critical products 
where continued high performance or performance-on-demand is essential. 

IPC-2221A provides extensive guidance on the electrical aspects of PCB design to 
ensure both signal integrity and user safety. One of the most critical safety 
considerations in PCB design is the spacing between conductive elements, known as 
clearance. Insufficient spacing can lead to dielectric breakdown or arcing between 
traces, especially at higher voltages. IPC-2221A provides detailed tables that specify 
the minimum required clearance based on the peak DC or AC voltage between 
conductors. These requirements vary based on whether the conductors are on internal 
or external layers and whether they are coated. For the dance pad, which operates at a 
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low voltage of 5V, the minimum spacing requirements are easily met, but acknowledging 
this standard is crucial for demonstrating sound design practice. 

The width and thickness of a PCB trace determine its current-carrying capacity. A trace 
that is too small for the current it must carry will overheat due to its own resistance, 
which can damage the PCB laminate or cause the trace to fail entirely. IPC-2221A 
provides charts and formulas that relate a conductor's cross-sectional area to its 
temperature rise for a given amount of current. This allows designers to select an 
appropriate trace width to ensure the board operates within safe thermal limits. For the 
power and ground traces on the dance pad's PCB, these guidelines were used to 
ensure they could handle the total current draw of the system without significant 
heating. 

Beyond electrical rules, IPC-2221A specifies the physical and mechanical 
characteristics of the board to ensure its structural integrity and compatibility with 
assembly processes. Vias are plated-through holes that form electrical connections 
between different layers of a PCB, and their reliability is paramount to the function of a 
multilayer board. IPC-2221A provides specific guidelines for via design. The annular 
ring is the ring of copper that surrounds a drilled hole. The standard specifies a 
minimum acceptable annular ring width to ensure a solid connection between the via 
barrel and the trace after drilling and plating, accounting for manufacturing tolerances. 
For Class 2 designs, a robust annular ring is required to prevent breakout, where the 
drill hole is not completely surrounded by the copper pad. The aspect ratio is the ratio of 
the board's thickness to the diameter of the drilled hole. A high aspect ratio can make it 
difficult to achieve reliable copper plating down the entire barrel of the via, so the 
standard provides limits on aspect ratios to ensure manufacturability. 

The standard also addresses the need to manage heat generated by components. A 
common technique guided by IPC-2221A is the use of thermal relief pads. When a 
component pin needs to connect to a large copper plane, such as a ground plane, a 
direct connection would act as a large heat sink, making it very difficult to solder the 
component. A thermal relief pad creates small copper spokes to make the connection, 
which reduces the heat transfer during soldering while still providing an adequate 
electrical connection. 

A critical function of the IPC-2221A standard is to define the requirements for a 
complete and unambiguous documentation package. A design is only as good as the 
documentation that communicates it to the manufacturer. The standard calls for a set of 
documents that typically includes a fabrication drawing, an assembly drawing, Gerber 
files, and a Bill of Materials. The fabrication drawing specifies the board's dimensions, 
layer stack-up, materials, and drill hole information. The assembly drawing shows the 
location and orientation of all components. Gerber files are the industry-standard file 
format that describes each layer of the PCB, such as copper layers, solder mask, and 
silkscreen. The Bill of Materials is a complete list of all components to be mounted on 
the board. By following the documentation guidelines of IPC-2221A, the design intent 
for the dance pad's electronics is clearly and professionally conveyed, minimizing the 
risk of manufacturing errors.[30][31][32] 
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Standard: Universal Serial Bus (USB)  
​
The Universal Serial Bus is a ubiquitous industry standard that establishes 
specifications for cables, connectors, and communication protocols for connection, 
communication, and power supply between computers and peripheral devices. Its 
development was intended to standardize the connection of computer peripherals, 
thereby replacing a multitude of legacy interfaces. For this project, adherence to the 
USB standard is critical for ensuring interoperability and a seamless user experience. 

While several revisions of the USB standard exist, the USB 2.0 specification was 
selected for this project due to its widespread compatibility and sufficient data 
throughput for the required application. USB 2.0 provides a maximum data signaling 
rate of 480 Mbit/s, which is more than adequate for transmitting the state changes of the 
dance pad's nine input tiles. Furthermore, the standard specifies a bus power supply of 
5V, with a high-power device permitted to draw a maximum of 500mA, a critical 
constraint for the system's power budget. 

A key component of the USB specification relevant to this project is the Human 
Interface Device class. The HID class is a device class specification that defines a 
protocol for low-latency, low-power peripherals, such as keyboards, mice, and game 
controllers. The primary advantage of utilizing the HID class is that it obviates the need 
for custom host-side drivers, as support is natively integrated into modern operating 
systems, including Windows, macOS, and Linux. 

Device functionality is communicated to the host computer through a series of 
descriptors during the enumeration process. Device descriptors identify the peripheral 
with a unique Vendor ID and Product ID. HID descriptors specify that the device 
conforms to the HID class. Report descriptors are the most critical for this project, as 
they define the structure and format of the data packets, known as reports, that the 
device will send to the host. For the dance pad, the report descriptor will be configured 
to define a data structure containing the boolean state of each of the nine input tiles, 
effectively representing them as buttons. Once enumerated, the device transmits data 
to the host via Input Reports over a dedicated interrupt-based endpoint, ensuring that 
state changes are communicated with minimal latency.[33][34] 

Standard: FCC Part 15 – Unintentional Radiators  
The Federal Communications Commission establishes regulations to manage 
electromagnetic interference under Title 47, Part 15 of the Code of Federal Regulations. 
This standard governs the operation of radio frequency devices without requiring an 
individual license. Any electronic device incorporating digital logic and operating with 
clock frequencies greater than 9 kHz is capable of generating electromagnetic energy. 
While not its primary purpose, this energy can radiate from the device and cause 
interference with radio communications. Such devices are classified by the FCC as 
unintentional radiators. 

FCC Part 15 defines two primary classifications for unintentional radiators based on the 
intended market and environment. Class A is for devices used in commercial, industrial, 
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or business environments, where the limits on radiated and conducted emissions are 
less restrictive. Class B is for devices intended for use in residential environments. The 
emissions limits for Class B are significantly more stringent to prevent interference with 
consumer electronics such as televisions, radios, and Wi-Fi networks. Given that the 
9-tile dance pad is a consumer-oriented gaming peripheral, it falls under the Class B 
classification. Therefore, the design must consider stricter emission limits applicable to 
residential devices. 

While formal FCC certification is beyond the scope of this academic project, 
incorporating design principles aimed at minimizing electromagnetic interference is a 
fundamental aspect of professional engineering practice. Several strategies have been 
considered in the design of the device's printed circuit board and overall system 
architecture. The PCB is designed with a large, contiguous ground plane, which 
provides a low impedance return path for digital signals and minimizes the area of 
current loops that can act as radiating antennas. Small ceramic decoupling capacitors 
are placed physically close to the power and ground pins of the microcontroller and 
other integrated circuits. These capacitors serve as a local charge reservoir and shunt 
high-frequency noise from the power distribution network to the ground plane, 
preventing its propagation. The slew rates of high-speed digital signals are controlled 
where possible, as sharper signal transitions contain higher-frequency harmonic content 
that can contribute to radiated emissions. Finally, a shielded USB cable will be specified 
for connecting the device to the host computer. The shield helps to contain 
common-mode noise generated by the device's circuitry and prevents the cable from 
acting as an antenna. By implementing these EMI mitigation techniques, the design 
proactively addresses the requirements of FCC Part 15, ensuring the device operates 
as a responsible and non-interfering electronic product.[35][36] 

Standard: UL 62368-1 – Hazard-Based Safety for ICT & AV Equipment  

The UL 62368-1 standard represents a modern, hazard-based approach to product 
safety for Information and Communication Technology and Audio/Video equipment. 
Published by Underwriters Laboratories, this standard shifts from a traditional 
incident-based model to a proactive, performance-based methodology focused on 
identifying potential hazards and implementing safeguards to mitigate them. As the 
dance pad is an electronic peripheral that directly interfaces with both a host computer 
and a human user, ensuring its safety in accordance with established principles like 
those in UL 62368-1 is a primary design objective. 

UL 62368-1 is built on the principles of Hazard-Based Safety Engineering, which 
involves a three-step process: pinpointing all potential energy sources within the 
product, categorizing the energy sources based on their potential to cause pain or 
injury, and applying appropriate safeguards to protect users from any energy sources 
classified as hazardous. For the dance pad project, the primary energy sources are 
electrical and mechanical. 

While this academic project will not undergo formal UL certification, the design 
philosophy of UL 62368-1 has been integrated into the development process to ensure 
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user safety. Electrical hazard mitigation is addressed by powering the device exclusively 
by a 5V DC source via a standard USB 2.0 port, which is classified as an ES1 
environment under UL 62368-1. This low voltage is not considered hazardous and does 
not present a risk of electric shock. To protect against potential short circuits or 
overcurrent conditions, the custom printed circuit board design incorporates a resettable 
Polymeric Positive Temperature Coefficient fuse. This device automatically interrupts 
the circuit in an overcurrent event and resets when the fault is cleared, providing robust 
protection against fire hazards. All internal wiring is appropriately insulated and secured 
to prevent abrasion or pinching. 

Mechanical hazard mitigation is also considered, as the dance pad is subjected to 
significant and repeated mechanical stress during gameplay. The enclosure is 
constructed from high-impact polycarbonate and plywood, materials selected for 
durability and resistance to fracture. All external corners and edges of the enclosure are 
rounded to a radius of no less than 3mm to prevent cuts or injuries from sharp edges. 
The internal structure is designed to distribute impact forces, ensuring the assembly 
remains mechanically sound and that no internal components can become dislodged 
and create a secondary hazard. By adopting the hazard-based principles of UL 
62368-1, the design of the dance pad prioritizes user safety, addressing potential 
electrical and mechanical risks through deliberate material selection and the 
implementation of appropriate safeguards.[37][38] 

Standard: RoHS – Restriction of Hazardous Substances  
The Restriction of Hazardous Substances Directive, originating in the European Union, 
is a critical environmental and health-focused standard for the electronics industry. The 
directive, specifically RoHS 3, restricts the use of ten specific hazardous materials in the 
manufacture of various types of electrical and electronic equipment. Although this 
project is not intended for commercial sale in the EU, voluntary adherence to RoHS 
principles represents responsible engineering practice, minimizing environmental impact 
and ensuring the final product is safe for users and for disposal. 

The RoHS directive restricts several substances to a maximum concentration of 0.1% 
by weight, apart from Cadmium, which is limited to 0.01%. These substances include 
Lead, Mercury, Cadmium, Hexavalent Chromium, Polybrominated Biphenyls, 
Polybrominated Diphenyl Ethers, and four specific Phthalates. 

A conscious effort was made throughout the procurement and assembly phases to 
ensure the components and materials used in the dance pad are RoHS compliant. All 
active and passive electronic components, including the microcontroller, resistors, 
capacitors, connectors, and diodes, were sourced from reputable distributors where 
they were explicitly verified to be "RoHS Compliant" based on manufacturer's 
datasheets. This ensures that the fundamental building blocks of electronics are free 
from restricted hazardous substances. The custom PCBs for the project were 
manufactured by a fabrication house that offers a RoHS-compliant manufacturing 
process, guaranteeing that the PCB substrate, solder mask, and surface finish do not 
contain restricted materials. The most significant step taken to ensure RoHS 
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compliance during in-house assembly was the exclusive use of lead-free solder. Instead 
of traditional tin-lead solder, a tin-silver-copper alloy was used for all soldering tasks. 
While lead-free solder requires higher working temperatures and presents different 
wetting characteristics, its use eliminates the most common hazardous substance found 
in electronics assembly, protecting both the assembler and the environment. By 
adhering to the RoHS directive, this project demonstrates a commitment to modern, 
environmentally conscious design standards that extend beyond immediate functional 
requirements.[39][40] 

Standard: IPC-A-610 – Acceptability of Electronic Assemblies  
 
The IPC-A-610, "Acceptability of Electronic Assemblies," is the most widely recognized 
global standard for the workmanship and quality of printed circuit board assemblies. 
Developed by the Association Connecting Electronics Industries, this standard provides 
comprehensive, visually supported criteria for evaluating the quality of electronic 
assemblies. Adhering to the principles outlined in IPC-A-610 is essential for ensuring 
the long-term reliability and functionality of the dance pad custom electronics. A failure 
in a solder joint or a misplaced component could lead to intermittent or total failure of 
the device during use. 

IPC-A-610 defines three classes of product quality, reflecting the intended life cycle and 
operational environment of the assembly. Class 1 is for general electronic products 
where the primary requirement is the function of the completed assembly. Class 2 is for 
dedicated service electronic products requiring extended reliability and continued 
performance, where uninterrupted service is desired but not critical. Class 3 is for high 
performance or harsh environment electronic products where continued high 
performance or performance-on-demand is critical. For this project, Class 2 was 
established as the target quality standard. As a game controller subject to physical 
impact and repeated use, a high degree of reliability is necessary to ensure a consistent 
user experience. 

The criteria of IPC-A-610 were applied during the hand-assembly and inspection 
phases of the custom electronics. All solder joints were created with the goal of meeting 
Class 2 acceptability criteria. This includes ensuring proper wetting on both the 
component lead and the PCB pad with a contact angle of less than 90 degrees, forming 
a concave solder fillet, and avoiding common defects such as cold joints, disturbed 
joints, excess solder, or solder bridging between adjacent pads. Meticulous care was 
taken during component placement to ensure correct orientation for polarized 
components, such as diodes and electrolytic capacitors. All components were placed 
centrally on their respective land patterns on the PCB before soldering, as specified by 
the standard. Following assembly, each board underwent a thorough visual inspection 
using magnification and proper lighting. This inspection verified that solder joints were 
acceptable and that no foreign object debris, such as stray wire clippings or solder balls, 
was present on the board. Furthermore, the boards were cleaned with isopropyl alcohol 
to remove flux residue, which can be corrosive over time and can lead to electrical 
leakage paths, in alignment with IPC standards for post-assembly cleanliness. By 
targeting IPC-A-610 Class 2 workmanship, the project ensures that the assembled 
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electronics are not only functional but also robust and reliable, capable of withstanding 
the demands of their intended application.[41][42] 

4.1 IEC 62471 - Photobiological Safety  
 
When designing the LED panels, it was important to verify whether the system adhered 
to relevent photobiological safety standards.  IEC 62471 is an internationally recognized 
framework standard that defines safety evaluation criteria for optical radiation, including 
visible, ultraviolet, and infrared sources. The purpose of this standard is to ensure 
systems protect human eyes and skin from photobiological hazards associated with 
artificial light sources, such as LEDs. IEC 62471 classifies  systems  into risk groups 
based on their radiometric output and potential health hazards, ranging from Exempt 
(RG0) to Risk Group 3 (high risk). [14].  
 
For S.T.E.P.S, 850 nm infrared LED strips are being used to provide active illumination 
for pose detection. Since 850nm is near-infrared and partially outside of the visible 
range, it is still covered by  IEC 62471, which encompasses wavelengths between 200 
nm and 3000 nm.[14] The  LEDs being used  are placed approximately 1.8 meters from 
players. According to industry summaries of IEC 62471, systems using 850nm LEDs 
typically fall within Risk Group 1 provided their radiant exposure stays below the 
established safety thresholds. [14] 
 
Although minimizing the radiant flux is recommended to comply with IEC 62471, in this 
project the actual risk is very minimal. The 850nm LEDs are partially visible, mostly 
safe, and extremely common in consumer motion-tracking systems. The player distance 
of 1.8meters, combined with time-multiplexing and wide distribution of LEDs, means 
that the design itself is very low risk and well within Risk Group 1. No hazardous 
exposure conditions are expected. 
 
4.2 ISO 9241-210 -  Ergonomics of human-system interaction  
 
Another important standard was ISO 9241-210. ISO 9241-210 defines principles for 
designing interactive systems with a focus on user comfort, safety, and 
effectiveness.[13] This standard is relevant to the illumination system because it 
emphasizes minimizing discomfort. Glare, and distractions. It is important that the 
system does not affect the player’s comfort. Avoiding glare and minimizing distracting 
illumination effects is important for user comfort and effectiveness. The system will 
follow ISO 9241-210 by ensuring the LEDs do not produce visually uncomfortable 
brightness (by selecting  850nm over visible  white), by time-multiplexing zones to 
prevent perceptible filcker, and by mounting the arrays to avoid direct illumination into 
the players’ eyes. Together, these measures support a user-centered design that 
prioritizes both an enjoyable and non-distracting gameplay experience.  
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4.3 IEC 60598 Luminaires 
 
The final  standard  considered is IEC 60598. IEC 60598 specifies safety requirements 
for luminaires with respect to electrical, thermal, and mechanical hazards[15].  Although 
originally written  for traditional lighting fixtures, its  principles  remain relevant due to the 
LED arrays function as a luminaire in the player environment. The system will follow 
these guidelines by ensuring properly rated wiring, insulation, and current-limiting fuses 
to prevent electrical shock, overheating, or mechanical failure. Given that  the proposed 
12V LED illumination operates at low voltage with moderate current,  no additional IEC 
60598 certification is anticipated beyond following standard best practices. 
 
Finally basic electromagnetic compatibility considerations (EMC) practices were 
considered to ensure the LED driver circuitry does not interfere with the camera system. 
The PCB will include standard layout practices such as decoupling capacitors and solid 
grounding to reduce any risk of electrical noise affecting camera performance. 
 
 
Table 4.1 Optical and illumination standards​
 
Standard Purpose Relevant 

Wavelength 
Risk Level 
In S.T.E.P 

Design Impact 

IEC 62471 Photobiological 
LED Safety 

200-3000nm RG1 (Low 
Risk) 

850nm IR LED 
selection, 
distance 
testing 

ISO 9241-210 Human-system 
interaction 
ergonomics 

Visible spectrum N/A Zone lighting 
layout, glare 
avoidance 

IEC 60598 Electrical 
safety for 
luminaries 

Electrical/thermal N/A PCB layout, 
fuse integration 

 

4.4 Optical Design Constraints 
 
The main design constraint for the optical system is achieving a sufficient horizontal 
field of view (HFOV) and depth of field (DOF) to cover the entire dance pad array. The 
system must monitor a 2.9 m * 2.9 m play area from a camera mounted approximately 
1.8m away. This geometric requirement translates to a horizontal field of view of 
approximately 93°, based on trigonometric calculations. Maintaining this coverage 
ensures that all nine dance pads  remain consistently visible to the pose estimation 
algorithm at all times. Minimizing the possibility of tracking errors or missing key player 
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landmarks. To achieve this constraint, a 3mm focal length aspherical lens was 
designed, balancing the need for wide-angle capture with minimal distortion and 
acceptable pixel resolution. This design choice guarantees that the system can 
consistently and reliably observe the entire interactive area without gaps, which is 
essential for gameplay accuracy and user satisfaction. 
 
With a 93° FOV covering the dance pad array, each pad will occupy a relatively small 
number of pixels in a 1080p frame. This means there will be a trade-off between 
covering a large area and maintaining enough pixel density for precise pose detection. 
The 3 mm aspherical lens balances this trade-off by providing wide coverage while 
maintaining acceptable pixel density to allow MediaPipe to resolve key landmarks with 
adequate clarity. This constraint ensures that gameplay remains responsive and 
reliable, without introducing latency or missed detections. 
 
The physical placement of the camera module is another important constraint. The 
camera must be positioned to achieve the target field of view while avoiding occlusions 
caused by player movements, and minimizing distortion. The camera is planned to be 
mounted at the average torso height of approximately 1-1.5m above the floor, and 
angled downward to encompass the entire 2.9 m * 2.9 m player tracking area, This 
position balances both the horizontal and vertical FOV requirements while maintaining a 
natural perspective of the player’s posture. It also helps minimize motion blur and 
ensures that MediaPipe receives high-quality data without key body joints being blocked 
by sudden movements. Consistent, predictable mounting geometry is essential to 
calibrate the tracking system and maintain performance between game sessions. 
 
Uniformity of illumination is a critical design constraint to ensure that MediaPipe’s AI 
pose estimation functions accurately across the entire play area. A non-uniform lighting 
pattern with hotspots or dark corners could cause the system to lose track of the player, 
reducing gameplay accuracy. An issue that could arise in dimly lit rooms such as some 
arcade enivronments. The target uniformity is specified as at least 85%, ensuring that 
the lowest illuminated areas maintain at least 85% of the brightness of the most 
illuminated regions. To achieve this, the LED layout was designed to distribute light 
evenly, with time-multiplexed zone activation reducing local overheating and maintaining 
consistent brightness throughout the tracking space. During testing, uniformity will be 
verified by analyzing pixel intensities of a calibration target using the camera sensor, as 
a practical substitute for more complex photodiode measurements. This constraint 
supports a robust, repeatable, and comfortable user experience.  
 
The power consumption of the LED-based illumination system was considered to 
ensure   the system operated within reasonable current limits while maintaining efficient 
performance. Time-multiplexing was adopted to keep the instantaneous current per 
zone modest, simplifying the PCB layout and reducing any potential thermal buildup. By 
activating only one lighting zone per camera frame (at 120 fps with an 8.3 ms frame 
duration), and cycling through all four zones every 33 ms, the system limits 
instantaneous current  draw 1.5A per zone instead of a peak 6A if operated 
simultaneously. This strategy supports simpler, more reliable driver electronics while 
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ensuring consistent illumination without perceptible flicker for the pose detection 
algorithm. 
 
In addition to technical constraints, practical considerations such as development time, 
budget limitations, and component availability also influenced the optical system design. 
Considering the project operates within a constrained academic timeline of two 
semesters, the number of design iterations is limited. Creating a fully functioning 
prototype within that time frame  emphasizes the need for early, informed component 
selection. Economically, the system had to remain affordable, which excluded expensive 
custom optics or high-end machine vision cameras. Off-the shelf M12 lenses and 
commercially available LED modules were selected to strike a balance between cost 
and performance. Furthermore, all components had to be available lab tools and 
fabrication resources,minimizing custom machining or advanced calibration procedures. 
These constraints shaped the design process, ensuring that the final optical system 
remains technically sound and feasible to replicate with a modest engineering budget 
and time frame.  
 
Table 4.2 Optical and Illumination Design constraints 
 
Design Constraint Requirement Justification/Notes 

Horizontal Field of View 
(HFOV)  

≥ 93° to cover 2.9 m x 2.9 
m player tracking area at 
1.8 m distance 

Ensure entire play area is 
visible without blind spots 
or occlusion 

Focal Length  ~ 3 mm (aspherical M12 
lens) 

Balances wide coverage 
with acceptable pixel 
resolution ( ≥3pixels/mm) 

Pixel Density ≥ 3 pixels/mm Required to resolve ~1mm 
player features for 
MediaPipe tracking 

Camera Height & Angle 1.0-1.5m, angled 15-20° 
downward 

Captures full body while 
minimizing occlusion and 
distortion 

Illumination Uniformity ≥ 85% brightness 
uniformity across play area 

Prevents tracking dropout 
due to hotspots or dark 
zones 

Power Consumption ≤ 1.5 A per LED zone, ≤ 18 
W per zone 

Ensures thermal safety 
and simplifies driver 
circuitry with 
time-multiplexing 
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Design Constraint Requirement Justification/Notes 

Time-Multiplexed IR Zones One zone active per frame 
(60 FPS → 16.7 ms per 
frame, 4-zone cycle = 66.8 
ms)  

Avoids flicker and reduces 
peak current draw while 
maintaining seamless 
illumination 

Budget Off-the- shelf components 
only 

Avoids costly custom 
optics and enables faster, 
more reliable prototyping 

Development Time Completed within 
2-semester academic 
schedule 

Limits iteration cycles, 
emphasizing early, 
well-informed design 
decisions. 

Component Availability Compatible with available 
lab equipment and tools 

Reduces need for 
machining or specialty 
alignment fixtures. 

4.5 Design Trade-off: Full Coverage vs. Low Distortion 

4.5.1 FOV Lens comparison 

 
A critical decision in the optical system design was selecting between two M12 lenses: 
the CIL034 (3.2 mm, 87° HFOV) and the CIL329 (2.8 mm, 120° HFOV). From the fixed 
camera mounting distance of 1.83 m , the system requires a horizontal field of view of at 
least 93° to fully encompass the 2.9 m- wide tracking area. While the 120° lens easily 
satisfies this requirement, it introduces significant barrel distortion near the edges of the 
frame. This distortion can negatively impact pose estimation by warping limb 
proportions or causing landmark misinterpretation near the periphery.​
 
In contrast, the 87° lens provides lower optical distortion and higher pixel density across 
the player’s body, enhancing the quality of MediaPipe’s pose recognition, particularly in 
the central tracking zone. Although it offers slightly less edge margin than wider-angle 
options, it still captures the full dance pad area from the 1.8m distance with minimal 
distortion.. 
 
After evaluating these trade-offs, the 3.2 mm (87°) lens was selected due to its sharper 
central imaging, lower distortion profile, and sufficient coverage for solo gameplay, 
where players tend to remain within the central region. This design choice prioritizes 
pose detection fidelity and image quality over more peripheral buffer coverage, a 
compromise deemed acceptable for the current gameplay design. Future revisions may 
consider distortion-tolerant tracking models or higher resolution sensors to 
accommodate wider FOVs without compromising detection accuracy. 
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4.5.2 Distortion Impact on AI Performance 

 
The selected CIL034 lens specifies <0.1% distortion and is classified as rectilinear, 
meaning it maintains straight lines across the field. This helps reduce issues such as 
wrapping of limbs or landmark displacement at the edges of the frame. Although 
distortion is more pronounced in ultra-wide lenses like the 120° model, the chosen 87° 
lens ensures spatial consistency in landmark tracking. While MediaPipe has some 
tolerance for distortion, retaining geometric fidelity in the player’s body structure 
improves joint prediction confidence and minimizes tracking errors. If wider coverage is 
required in future iterations, software correction (e.g. OpenCv lens calibration) could be 
considered to compensate for edge warping without hardware changes. 
 

5. Comparison of AI Engines 

5.1 Case Studies 
 
The goal of using various Artificial Intelligence engines is to see various aspects of 
information given by Artificial Intelligence and compare them with one another. One 
main question that was asked to the 4 engines used was: What would be the best way 
to create a rhythm game for a beginner? Would using a game engine be best or are 
there other alternatives to complete this objective? The reason for the prompt was to 
find out what would be the best way to create a rhythm game for a project of this 
magnitude. We have heard of game engines that existed just as Godot, Unity, Unreal 
Engine, and Scratch, however we wanted to see which of those listed are beginner 
friendly. Furthermore we wanted to see if Artificial Intelligence would have 
recommended any other sources that aren't game engines that exist that are also 
beginner friendly that could be used to accomplish our objective. What we found were 
the following responses from each Artificial Intelligence engine when given the prompt 
above. 
 
Some more case studies we can look at are regarding our hardware. While we know 
that we need an MCU, we want to see what MCU works best for a design, so we also 
asked the 4 engines the following: What MCU would be best to run a 9 directional 
dance pad that can connect to a PC via USB, while also being able to communicate to 
an LED driver to switch an LED panel on and off? The purpose of this prompt is to see 
what our best options are and how they are the best options, in order to narrow down 
our research as there are multiple options to choose from.  
 
Another case study we can look at is regarding our dance pad panel sensors. Much like 
our MCU, we asked the 4 engines the following: What type of dance pad panel sensor 
is best used in arcade grade dance pads and DIY dance pads? The purpose of this 
prompt is to see what is typically used so that we have a general idea of what the most 
common types are, so that we can narrow down our research. 

101 



 

 
The other case study that we asked each of the different Artificial Intelligence large 
language models was: How can we implement computer vision into a dance rhythm 
game using a camera? The reason for this was to choose how we can implement 
existing computer vision technology into the game after.  
 
The last case study we asked to the Large Language Models was: How can we 
implement rhythm synchronization into a Godot project? 

5.2 ChatGPT 
​
After looking at ChatGPT’s response to the rhythm game question asked, some very 
helpful information was given in regards to what we can use for designing the game. 
ChatGPT said that game engines are a recommended resource that can be used for 
those who are coding games as a beginner. Game engines are able to help users with 
difficult portions of game design with aspects such as inputs and audio being hard to 
use . The ones that ChatGPT recommended were Unity and Godot with scratch being 
added as well. [23] 
 
Regarding MCU selection, ChatGPT offered a list of MCU with their pros and cons, as 
well as what they are best for. This is a good thing because it helped narrow our 
research better. It also goes over LED Driver Options, and USB HID vs Serial, little 
things to keep in mind. Lastly, ChatGPT recommended Teensy 4.0 and Arduino 
Leonardo for plug-and-play USB controller functionality, responsive LED control, and 
easy development. However, Raspberry Pi Pico or STM32F103 (Blue Pill) is best if we 
want more power and flexibility. [23] 
 
For our dance pad sensor question, we got a list of the most commonly used and 
presumably most effective panel sensor types. ChatGPT listed each type, what they’re 
best for, where they are used in, how they work, and pros and cons. ChatGPT does 
pretty well summing up the key features of each sensor, as well as providing useful 
information. However, the provided information is still general, mainly used as a base for 
research. After all the listed types of sensors, ChatGPT recommended different sensors 
depending on their use case (i.e., arcade-quality, DIY (budget), and DIY (premium)) 
 
After asking ChatGPT the question of: How can we implement computer vision into a 
dance rhythm game using a camera?, important information such as “core components” 
were given which included a camera, Computer Vision models such as MediaPipe, 
OpenPose, and Movenet were given, as well as how to implement these aspects into 
the game itself.[23] 
 
Furthermore, ChatGPT gave us additional help as to how to the game should flow when 
implementing the Computer Vision models with the example of loading a song with a 
predefined chart, have the camera be able to detect player poses, and during each beat 
window, give a score depending on the threshold set, and have that score be reflected 
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and shown on screen. This gives an idea of what we ourselves could use for the game 
implementation of the computer vision side.[23] 
 
ChatGPT gave us an extensive and thorough explanation as to what we could add for 
the rhythm game synchronization aspect of the game. It gave us some steps as to how 
to add a music track, set the BPM for the song, add a timer, and have an on beat 
function. Furthermore what ChatGPT gave us an idea with , is thinking of how to 
implement with the game as a whole having a mapping of the series of arrows put onto 
the game. Using a .beatmap file or a JSON file would be most helpful with JSON being 
easier to do using a script to create a JSON file after pressing a series of buttons. 

5.3 Google Gemini 
 
Google Gemini gave us a more indepth look as to why game engines would be the best 
resource to use when creating a rhythm game. Google Gemini explains that game 
engines handle much of the work in regards to audio synchronization, inputs, and have 
communities that contain many forums, tutorials, and other useful tools for creating 
games. The game engines that Google Gemini recommended were similar to those of 
ChatGPT, including Godot and Unity, however did not mention scratch but rather 
mentioned GameMaker Studio. [25] 
 
Google Gemini, much like ChatGPT, listed a few MCU options with pros and cons. It 
listed down each MCU’s key features. Additionally, Gemini also listed down key 
considerations for our project. In the end, Gemini recommended Arduino Leonardo or 
Adafruit ItsyBitsy M0/M4. 
 
Moreover, this time around, after searching our dance pad sensor selection question, 
we were not provided a pros and cons list. Instead, the best options are explained as to 
why they are best for certain cases - listing their key features and things to consider as 
we’re deciding (e.g. weaknesses of the sensor). After listing the best options, it also 
listed less common and emerging options just to provide us more options. While Gemini 
was a lot more informative with this approach, it did not provide enough comparison 
between the different types, more specifically, a comparison table could’ve provided 
more clarity to what has been stated. In the end, Gemini recommended FSRs for both 
arcade-grade and DIY dance pads. 
 
Similarly to ChatGPT, Google Gemini also gave us the idea to use MediaPipe or 
OpenPose for computer vision libraries that would be useful for camera integration, 
furthermore, Google Gemini also gave us an additional source of YOLO that also can 
be manipulated and changed to be able to include pose detection. Google Gemini then 
goes into how to obtain the data and process it using the camera's input and processing 
the information frame by frame into the computer vision library of choice. [25] 
 
On the aspect of implementation with the rhythm game itself, Google Gemini 
additionally gave us information as to how to implement matching the pose to the given 
reference that we give it. There are many examples that were provided such as: 
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"Euclidean Distance”, “Cosine Similarity”, “Dynamic Time Warping” or through “Machine 
Learning/Deep Learning” [] For the game logic side, Google Gemini recommended 
having rhythm synchronization as well as visual feedback. We believe this can be done 
using some on screen text or prompt depending on the timing showing how well they 
performed the certain pose when told. The way to implement the pose timing is by 
having a silhouette of the pose itself on screen to indicate to the user which pose will be 
the one to pop up which thankfully was an idea that Google Gemini itself gave us as an 
option to use. 
 
With Google Gemini, the benefits of using it to ask the question about rhythm 
synchronization, was that it gave us the core concepts of what we would need to include 
for rhythm synchronization to be accomplished in Godot. The concepts that are included 
are:  
 

●​ Audio Playback 
●​ Latency Compensation 
●​ BPM 
●​ Event Scheduling 
●​ Conductor System 

 
What Gemini also gives us are ways to implement each of these aspects. For example 
adding the Audio Stream Player, creating the conductor system, even how to add a 
rhythm notifier asset from the Godot asset store. Each of these aspects that Gemini 
gives us, helps us understand how to implement them and what process to complete it. 

5.4 Microsoft Copilot 
 
Microsoft Copilot was not a very useful tool as it gave similar information to ChatGPT 
and Google Gemini in regards to which game engines to use and had no deviation in 
regards to that information. Using a no-code design would not be useful for us and we 
would not be accessing the web for our project thus both section 2 and section 3 do not 
apply to our project.[24] 
 
Microsoft gave options much like ChatGPT and Gemini, however, instead of listing pros 
and cons, it made a comparison table of each MCU’s features (e.g., USB support, GPIO 
pins, etc.). It summarized that the given options had LED driver compatibility and dance 
pad input support, as well as other information to keep in mind regarding them. In the 
end, Microsoft copilot did not recommend a best-of-the-best MCU, instead just shared 
all options as the best for the design.  
 
For our dance pad sensor question, Microsoft copilot was unique in that it provided 
actual products from actual shopping websites, although they were not useful at all. For 
instance, Microsoft sent product details on a whole functioning dance pad, and corner 
panel mounts. The question was to find the best sensors, yet it provided actual dance 
pads that already exist. However, afterwards, Microsoft copilot does go over the 
different types, but only the smallest amount of key features, though very generic and 
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hard to understand. Microsoft copilot lacked in explaining meaningful information. In the 
end, Microsoft copilot recommended conductive plate sensors or Chinese arcade dance 
sensors for arcade-like feel, FSRs for customization and tech integration, or 3D printed 
spring sensors for an affordable and creative build.  
 
Microsoft Pilot was not very useful after using both ChatGPT and Google Gemini as it 
gave very similar information on the topic. However, the one positive aspect of using 
Microsoft Pilot was the chart that it gave. 
 
Table 5.1 Microsoft copilot Computer Vision Table 
 

Tool Use Case Why It Works Well 

MediaPipe Fast pose detection Lightweight & 
cross-platform 

Unity + Barracuda Game dev + ML model 
integration 

Familiar workflow, 
compatible with C# 

OpenCV Image processing & 
camera control 

Open-source, powerful CV 
toolkit 

 
This gives very insightful information based on what we need in terms of computer 
vision. Whether that be to use MediaPipe, Unity and a machine learning model called 
Barracuda or another type of computer vision model, or using OpenCV. Each of these 
options have their strengths and weaknesses. 
 
MediaPipe for example has fast pose detection and is lightweight however there could 
be the possibility that it is not as accurate as other computer vision algorithms like 
OpenCV. OpenCV is open-source and has the possibility of Image Processing and 
Camera Control so it is another source we can research to see if it would be the right fit 
for us. 
 
Microsoft Pilot gives us something very similar to both Gemini and ChatGPT that 
recommends us to use an AudioStreamPlayer, create a JSON beat map, and have 
some sort of timer that allows for calibration for the timing. 
 
Furthermore Pilot gives us a chart of different techniques as to how to make the project 
better and more efficient.  
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Table 5.2 Microsoft copilot Rhythm Synchronization Table 
 

Technique Benefit 

Audio latency 
compensation 

Adjust for input delay on different devices 

MIDI or beat detection 
tools 

Automate beatmap creation from music 

Godot plugin ecosystem Explore tools like BeatDetector or custom modules for 
audio analysis 

5.5 DeepSeek 
 
DeepSeek gave us the most amount of information regarding the game engine and the 
rhythm game. It recommended Unity and Godot as the top 2 choices for deciding which 
game engine to use, however it also included Unreal Engine which is a common game 
engine that is used. Furthermore DeepSeek also gave us insightful tips as to how to 
proceed with the game design of the rhythm game itself. These tips include starting 
small and afterwards adding more features, following online tutorials for the game 
engine of choice, and also attempting prototyping with different aspects that will be 
implemented.[26] DeepSeek was the most helpful in this case and had a positive 
outcome on how we continued with the project. 
 
DeepSeek was almost similar to that of ChatGPT and Gemini’s response, in that it not 
only listed pros and cons of each MCU, but also what they’re best used for. However, 
DeepSeek did not list enough information explaining each MCU, nor do they use a 
comparison table for better clarity. Not enough numerical specifications are mentioned, 
leaving us wondering what else to keep note of like GPIO pins, or ease of assembly. In 
the end, DeepSeek recommended Raspberry Pi Pico for its best balance of price and 
features, or Arduino Pro Micro for its ease of use and plug-and-play USB functionality.  
 
Regarding the dance pad sensor question, DeepSeek was almost exactly like ChatGPT. 
DeepSeek listed each of its best options and their pros and cons. However, much like 
ChatGPT, the listed pros and cons or additional information were lacking and only 
provided as a base for our research. In the end, DeepSeek mainly recommended FSRs, 
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whether it be DIY using conductive material and Velostat, or the actual hard component 
of FSRs. 
 
When it comes to the question of how to implement computer vision to our project with a 
camera, Deepseek, similar to ChatGPT and Copilot, gave us ways to implement pose 
detection using computer vision models such as MediaPipe or OpenPose, using 
keypoints to track movement joints, and have a coordinate system with those joints 
detected. Furthermore Deepseek went into more depth as to how to continue with the 
project through tracking, rhythm synchronization, scoring and validations, game 
interface, and even implementations with how to accomplish our goal. What is good 
about deepseeks answer was how it was able to explain the different aspects that we 
should take into consideration without giving us the way to do it and have it work it 
ourselves. 
 
With regards to the question “How can we implement rhythm synchronization into a 
Godot project?” Deepseek had a different approach as to how to help us with this 
question specifically. Deepseek had the idea of telling us exactly what it is that we need 
to implement in our game project in terms of scripts as well as the different settings to 
change in our project settings. This, although helpful, wasn't what we were looking for, 
but more so ideas as to how we can accomplish our goals and we were looking for 
more ideas that could work and not the implementation done for us.  

5.6 Conclusion 
 
Using these Artificial Intelligence systems gave us a lot of information as to where we 
can start on the software side of creating the rhythm game, as well as the hardware side 
in terms of finding the best MCUs and dance pad sensors for our design. All four 
engines agreed that using a game engine is the most beginner-friendly and effective 
approach for a project of this scale. The most commonly recommended engines were 
Godot, Unity, and Unreal Engine, with Godot especially noted for being lightweight, 
open-source, and beginner-friendly with strong 2D support. 
 
For MCU selection, there was a consistent set of recommendations across engines. 
ChatGPT suggested Teensy 4.0, Arduino Leonardo, Raspberry Pi Pico, and STM32 
boards, highlighting USB HID support and LED driver compatibility. Gemini emphasized 
Arduino Leonardo and Adafruit ItsyBitsy M0/M4, while also listing key considerations 
like GPIO availability and ease of development. Microsoft copilot provided a feature 
comparison table without a definitive recommendation but confirmed all listed options 
were suitable. DeepSeek leaned toward the Raspberry Pi Pico for value and features or 
Arduino Pro Micro for ease of use and plug-and-play functionality. 
 
For dance pad sensors, most engines leaned toward FSRs for both arcade-grade and 
DIY builds. ChatGPT and DeepSeek offered structured pros and cons and discussed 
budget vs. premium DIY builds. Gemini explained why certain sensors were ideal and 
even mentioned less common alternatives but lacked side-by-side comparison. 
Microsoft copilot stood out for mentioning physical products (though some were 
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unrelated), and ultimately recommended FSRs, conductive plate sensors, and 
3D-printed spring sensors, offering a broad range of creative solutions. 
 
AI tools were instrumental in our project's development. For computer vision, Google 
Gemini helped us weigh the benefits of MediaPipe (lightweight, fast) against OpenCV 
(open-source, camera control) and suggested implementation ideas like pose 
indicators. For our Godot-based game, LLMs provided a framework for rhythm 
synchronization, with ChatGPT suggesting core functions and Gemini recommending 
visual feedback. Ultimately, this guidance provided a strong foundation, helping us 
efficiently choose the right game engine, MCUs, and sensor technology for our 
9-directional dance pad. 
 
For implementing computer vision, the majority recommended using MediaPipe or 
OpenCV as our computer vision model of choice. Additionally they gave us more 
information as to how to apply computer vision to the game. Whether that be through 
having silhouettes or some type of indicator to show that a pose is popping up. The 
Large Language Model of Google Gemini was extremely helpful when giving us a chart 
of the different computer vision models to use by explaining how MediaPipe is 
lightweight and has fast pose detections while OpenCV is open source and has good 
camera controls. It helped us have an idea of which ones can be used and what we 
should research more on. 
 
For implementing rhythm synchronization the Large Language Models were very useful 
in helping us have a start and think about how to implement the synchronization. Due to 
this point having chosen Godot as our game engine of choice. The models gave us 
insight as to how to implement the synchronization by telling us various aspects that we 
must keep in mind when creating this. For example, ChatGPT recommended to add a 
music track, set the BPM for the song, add a timer, and have an on beat function when 
creating the synchronization.[] Google Gemini further expands on this by explaining how 
some visualization of synchronization existing would improve the quality of the project. 
 
In the end, these AI tools provided a strong foundation for choosing not only the right 
game engine, but also the most suitable MCUs and sensor technologies for 
implementing our 9-directional rhythm game dance pad, helping us focus our research 
and development efforts effectively. It additionally helped us decided the best course of 
action in regards to both how to use computer vision for our project and how to 
implement rhythm synchronization which is integral to any rhythm game. 
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6. Hardware Design  

6.1 Dance Pad Master Controller Board  
 

 
​
Figure 6.1  Dance Pad Master Controller Board Schematic 
 
Core Functionality 

This PCB is designed to be the “Master Controller” for the 9-tile dance pad game. In this 
modular design, this board's primary purpose is to act as the central brain or manager. It 
communicates with the host PC via USB, receives power from the Power Hub, and 
manages all nine smart Tile Boards over an I2C communication bus. 

Circuit Breakdown 

The heart of the board is an ATmega32U4RC-A microcontroller, designated as U1. This 
chip was chosen specifically because it has native USB capabilities, allowing it to easily 
communicate with a PC as a game controller without needing extra chips. A 16 MHz 
crystal oscillator, Y1, along with its two 22pF loading capacitors, C1 and C2, and a 1MΩ 
parallel resistor, R1, provides a precise and stable clock signal, which is essential for 
reliable USB communication. A simple pushbutton, SW1, is connected to the RESET 
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pin, along with a 10kΩ pull-up resistor, R4, and a protection diode, D1, to allow for a 
manual reset during testing and development. A 6-pin header, J4, serves as the 
In-Circuit Serial Programming port, with its sole purpose being to allow the initial 
programming of the Arduino bootloader onto the fresh ATmega32U4 chip. 

The USB interface section handles the data connection to the host computer and is 
designed to be very robust. A USB-C Receptacle, J2, provides the physical connection. 
This connection is protected by a 500mA resettable polyfuse, F1, which prevents the 
board from drawing too much current and damaging the computer's USB port. ESD 
protection diodes, D2 and D3, are placed on the D+ and D- data lines to guard the 
microcontroller against static shocks. Two 5.1kΩ pull-down resistors, R2 and R3, are 
connected to the CC1 and CC2 pins; this is a critical part of the USB-C specification that 
identifies the board as a device to the host computer. A ferrite bead, FB1, filters noise 
on the USB cable's shield connection. 

The board receives its power from the external “Power Hub” board and carefully filters it 
for stable operation. The board is powered by a stable +5V and GND supplied via the 
3-pin connector J7. To ensure clean power for the microcontroller's internal analog 
components, the AVCC pin is filtered through a ferrite bead, L1, and a 1µF capacitor, 
C3, which creates an LC low-pass filter to isolate it from noise. Several 100nF 
capacitors are placed near the chip's various power pins to filter out high-frequency 
noise and ensure stable operation. PWR_FLAG symbols are directives for the design 
software, confirming that the +5V, GND, AGND, and VUSB nets are intentionally 
powered, which resolves common electrical rule check errors. 

This board serves as the central hub for all external connections. The 3-pin “Power 
Hub” Link connector, J7, receives +5V and GND to power this entire board, and it sends 
the PWM signal from pin PC6 to control the TV's IR illumination. The I2C Bus Output, 
J3, is a new, critical 4-pin connector for the modular design that serves as the starting 
point for the bus that connects to all nine “Input Tile” boards. It provides +5V and GND 
to power the entire chain of tiles and connects to the ATmega32U4's hardware I2C pins, 
PD1 for SDA and PD0 for SCL. A simple green "ON" LED, connected via a 1k resistor, 
provides a quick visual confirmation that the board is powered on. 
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6.2 Power Hub Board  
 

 
​
Figure 6.2 Power Hub Board Schematic 

Core Functionality 

This PCB is designed to be the central “Power Hub” and high-current driver for our 
dance pad project. Its primary purpose is to take a single 12V input and safely distribute 
power to all other parts of the system, while also controlling the high-power IR LEDs for 
the computer vision system. 

Circuit Breakdown 

The circuit's main power input is a standard DC Barrel Jack, J1, which accepts 12V DC 
from an external wall adapter. A 100µF capacitor, C1, is placed directly across the input 
to smooth out the incoming 12V supply and filter out any low-frequency noise or ripple 
from the power brick, providing a more stable input for the rest of the circuits. 

This board creates the stable 5V needed to run the “Master Controller” board. This is 
accomplished by U2, an LM2576T-5, which is a highly efficient 5V switching buck 
regulator. It takes the 12V input and steps it down to a constant 5V output. A switching 
regulator was chosen over a linear one because it is far more efficient and generates 
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significantly less heat. The circuit includes an input capacitor C2, a 1N5822 Schottky 
diode D1, a 100µH inductor L1, and a large 1000µF output capacitor C3. These 
components are required by the LM2576's datasheet to form the complete buck 
converter circuit. The regulated +5V is sent to the “Master Controller” board via the 3-pin 
connector J2. A green "ON" LED, powered through a 1kΩ resistor R34, provides a 
simple visual confirmation that this 5V supply is active. 

The most advanced part of the board is the constant-current IR LED driver. The driver 
IC U1, an MP24894, is the brain of this circuit. It receives a PWM signal from the 
“Master Controller” and uses it to control the brightness of the LEDs. The MP24894 
sends a precise drive signal from its DR pin to the gate of an external N-Channel 
MOSFET, Q1, which acts as the main switch for the high-power LEDs. The IC 
constantly monitors the current flowing through the LEDs by measuring the voltage 
across the sense resistor, R_SENSE, and adjusts the switching of the MOSFET to keep 
the current stable. A 2-pin screw terminal, J3, provides a secure physical connection 
point for the wires from the external 12V IR LED strip. 

The 3-pin connector, J2, is the vital link between the “Power Hub” and the “Master 
Controller”. Pin 1 sends the regulated +5V power to the controller board. Pin 2 provides 
the common ground connection between the two boards. Pin 3 receives the PWM 
control signal from the controller board, which is then sent to the EN/DIM pin of the 
MP24894 driver to control the IR LED brightness. In summary, this board acts as a 
robust and intelligent power distribution center, ensuring both the controller and the 
high-power LEDs get the clean, regulated power they need to operate reliably. 

6.3 Input Tiles Board (x9) 

 

Figure 6.3 Input Tiles Board Schematic​
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Core Functionality 

Nine of these identical boards will be manufactured, each of these custom PCBs are 
designed to be a modular "smart tile" for the 9-tile dance pad game. with each one 
responsible for the sensing and lighting of a single tile. 

Circuit Breakdown 

The core of the Tile Board is an ATtiny85 microcontroller, designated as U4. This small, 
8-pin chip acts as the local brain for the tile. Its primary functions are to continuously 
read the pressure sensors, control the on-board aesthetic LEDs, and communicate with 
the “Master Controller” board over an I2C bus. A 100nF capacitor, C15, is placed across 
the microcontroller's power and ground pins to decouple the power supply, ensuring 
stable operation by filtering out high-frequency noise. 

The board features two independent analog sensor circuits to read from two separate 
off-board Force-Sensitive Resistors. The first FSR connects to the board via the 2-pin 
connector J7, where it forms a voltage divider with the 10kΩ resistor R7. The resulting 
analog voltage is read by pin PB4 of the microcontroller. The second sensor circuit is 
identical, using the connector J8 and the 10kΩ resistor R9, with its output read by pin 
PB3 of the microcontroller. This dual-sensor design provides redundancy and allows for 
more complex pressure sensing logic in the software. 

Aesthetic and interactive lighting is provided by a chain of nine addressable 
APA-106-F5 RGB LEDs, labeled D7 through D15. These LEDs are powered directly by 
the board's 5V and GND nets. The data signal originates from pin PB1 of the 
microcontroller and is daisy-chained from the Data Out of one LED to the Data In of the 
next. The Data Out pin of the final LED in the chain, D13, is left unconnected. This 
configuration allows the local ATtiny85 to have full, individual control over the color and 
brightness of every LED on its tile. 

Communication and power are handled via a 4-wire bus system, facilitated by two 4-pin 
connectors, J9 for "Bus IN" and J11 for "Bus OUT". These connectors are wired in 
parallel to allow the bus to be daisy-chained from one tile to the next. The bus provides 
the +5V and GND to power the entire board. It also carries the two I2C communication 
lines. The SDA line is connected to pin PB0 of the microcontroller, and the SCL line is 
connected to pin PB2. This allows the board to act as an I2C slave, responding to 
commands from the “Master Controller”. 

Finally, a 6-pin header, J10, serves as the In-System Programming port. This connector 
is used exclusively for loading the initial firmware onto the ATtiny85 chip after assembly. 
It connects to the VCC, GND, RESET, MOSI, MISO, and SCK pins of the 
microcontroller, allowing an external programmer to interface with the chip. 

113 



 

6.4 System-Level Hardware Integration  

While each of the three custom PCBs serves a distinct purpose, the true functionality of 
the STEPS hardware emerges from their carefully orchestrated interaction. The system 
architecture is a distributed network where power, control signals, and sensor data flow 
in a coordinated manner between the “Power Hub”, the “Master Controller”, and the 
nine “Input Tiles”. This modular approach is designed to create a robust and scalable 
system.  

6.4.1 Power Distribution and Regulation  

The “Power Hub” board is the entire system's electrical focal point. A 12V DC signal 
from an external power brick enters through the barrel jack (J1). This board immediately 
splits the power into two main pathways, a High-Power Path (12V) is the raw 12V input 
is routed directly to the high-current side of the board to supply the MP24894 
constant-current LED driver circuit. This path is designed to handle the significant 
current draw of the external infrared LED strips that border the external display used for 
the computer vision system. The other path is a Low-Power Logic Path (5V) where the 
12V input is also fed into an LM2576T-5.0 switching buck regulator (U2). This highly 
efficient regulator steps the voltage down to a stable, clean +5V. This 5V rail is essential 
for all the logic-level components in the entire dance pad.  

From the Power Hub, this regulated 5V power, along with a common ground, is sent to 
the Master Controller Board via a 3-pin JST connector (J2 on the Power Hub, J7 on the 
Master). The Master Controller then becomes the distribution point for the rest of the 
system. It uses this 5V to power its own ATmega32U4 microcontroller and then passes 
the 5V and GND lines out through its 4-pin I2C bus connector (J3). This single 
connector begins a daisy chain that delivers power to all nine Input Tile Boards, 
ensuring every ATtiny85 microcontroller and its associated RGB LEDs receive stable 
power.  

6.4.2 Control and Data Flow  

The flow of information is managed by the Master Controller, which acts as the central 
nervous system. It communicates both with the PC and with its subordinate Tile Boards.  

Each of the nine Input Tile Boards operates as an I2C slave device with a unique, 
pre-programmed address. The ATtiny85 on each tile continuously monitors the voltage 
from its two Force-Sensitive Resistors (FSRs). The “Master Controller” acts as the 
master to constantly poll each of the nine tile addresses in a rapid loop. When a tile 
receives a request from the master, it sends back a small data packet containing its 
current sensor readings. This distributed processing approach, where each tile 
manages its own sensing, prevents the Master Controller from being burdened with nine 
separate analog-to-digital conversions.  
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When the Master Controller receives data from a tile indicating a step has occurred 
(FSR pressure has crossed a given threshold), its firmware processes this event. The 
ATmega32U4 then uses its native USB capabilities to format the step data into a 
standard Human Interface Device (HID) report which emulates a generic game 
controller or keyboard input. This report is sent to the host PC over the USB-C 
connection. The game software on the PC receives this as a simple button press, 
requiring no custom drivers and ensuring maximum compatibility.  

Communication on the I2C bus is bidirectional. The game can send commands back to 
the Master Controller, which then relays these commands to the appropriate Input Tile 
Board. For example, upon a "Perfect" step, the master can send a command to Tile #5 
to trigger a flashing green light effect for example. The ATtiny85 on that tile receives the 
command and drives its local array of APA-106 RGB LEDs to produce the desired visual 
feedback.  

6.4.3 Vision System Illumination Control  

The control loop for the computer vision system's IR illumination demonstrates the full 
integration of all three boards. First, the game logic on the PC determines that the IR 
LEDs need to be activated. Second, the Master Controller's ATmega32U4 generates a 
Pulse-Width Modulation (PWM) signal on pin PC6. The duty cycle of this signal 
corresponds to the desired brightness of the LEDs. Third, this PWM signal travels from 
the Master Controller to the Power Hub Board via the 3-pin JST link. Finally, on the 
Power Hub, the MP24894 LED driver IC (U1) receives this PWM signal on its EN/DIM 
pin. It interprets the duty cycle and drives the external high-power MOSFET (Q1) 
accordingly, delivering a precise, constant current to the 12V IR LED strips.  

In summary, the hardware operates as a cohesive, hierarchical system. The Power Hub 
provides conditioned power, the Input Tiles act as localized sensor nodes, and the 
Master Controller serves as the central aggregator and communicator, seamlessly 
bridging the physical actions of the player with the software of the game.  

6.5 Optical Imaging System Design 
 
The optical subsystem is designed to reliably capture and analyze a player's full-body 
movements in real time, enabling the system’s pose-based “Style Score” feature. This 
subsystem integrates a global shutter camera, wide-angle lens, and an optimized 
near-infrared (NIR) LED illumination system to provide robust visual tracking across the 
entire play area. 
 
The vision system must cover the 2.9m x 2.9m tracking area at a typical player distance 
of 1.83m, maintaining a horizontal field of view of approximately 93°. This ensures 
consistent landmark detection and minimizes distortion even at the edges of the field.  
 
A time-multiplexed 850nm near-infrared LED system was selected to provide uniform, 
comfortable illumination that is invisible or only partially visible to the player but reliably 
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detected by the camera. This design minimizes distractions while maintaining sufficient 
brightness for accurate MediaPipe landmark tracking. 
 
In alignment with the project’s broader objectives stated in Chapter 2, the optical 
subsystem emphasizes consistent player coverage, high image clarity, safe illumination, 
and efficient integration with the vision-based scoring system. The imaging system is 
designed to deliver high spatial resolution, wide field of view, and low-latency image 
capture that supports real-time pose estimation. After evaluating multiple options, the 
SVPRO AR0234 camera module was selected. This camera was selected based on its 
technical specifications, including a 2.3MP resolution (1920 * 1200), 3µm pixel pitch, 
and frame rates up to 60 FPS over USB 3.0. The global shutter feature helps reduce 
motion artifacts during rapid gameplay. 
 
Given the player tracking area dimensions are 2.9m x 2.9m and the working distance is 
1.83m, the optical system must maintain a horizontal field of view of approximately 93° 
to reliably capture the entire play area with minimal occlusions. Commercial lenses with 
longer focal lengths or narrow fields of view are impractical, since they would have 
required either excessive installation height or more aggressive mounting angles to fully 
capture the 2.9 m x 2.9m play area. To avoid these challenges, the system instead uses 
a commercially available short focal length M12 lens that is approximately 3mm. It has  
a diagonal FOV between 100-114 degrees. The key engineering requirements for the 
optical subsystem are summarized in Table 6.1. 
 
Table 6.1 Engineering requirements for the optical imaging subsystem. 
 
Component Parameter Specification Unit 

Camera  a) Pixel Pitch 
b) Resolution 
c) Frame Rate 

a) 3 
b) 1920 x 1200 
c) ≥ 60 

a) µm 
b) pixels 
c) FPS 

Lens (M12 3mm) a) Focal Length 
b) Horizontal Field of 
View 

a) 3 
b) 93 

a)mm 
b)degrees 

Optical Subsystem a) Brightness 
Uniformity 
b) Resolution at 6ft 

a) ≥85 
 
b) ≥ 3 (resolving ~ 
1mm features) 

a)% 
 
b) pixels/mm 

 
As summarized in Table 6.1, the selected camera module and lens combination 
achieves a pixel pitch of 3 µm with a resolution of 1920 x 1200 pixels, is sufficient to 
meet the target of ≥ 3 pixels/mm needed for ~1mm feature detection at a 1.83m 
distance. The approximate 93° horizontal field of view ensures the full dance pad 
remains visible, while the geometric distortion and brightness uniformity specifications 
help preserve consistent landmark tracking across the entire field of play. 
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6.6 Illumination System Design 
 
Consistent and uniform illumination is essential. In a dim arcade environment or under 
changing lighting conditions, the system still needs to have consistent illumination of the 
player. Therefore, relying on ambient light alone is insufficient for consistent pose 
estimation. To account for this, an active illumination system was designed to provide 
uniform coverage across the entire 2.9m x 2.9m player  tracking area. 
 
850nm near-infrared (NIR) LED strips were selected as the primary illumination source. 
Near-infrared wavelengths are partially invisible to the human eye, minimizing player 
distraction and discomfort while remaining fully detectable by the camera’s image 
sensor, which does not have an IR-cut filter. This approach allows for reliable landmark 
visibility for MediaPipe while not compromising on user comfort. 
 
To further optimize power consumption and thermal performance, a time-multiplexing 
strategy is being used. In this scheme, the dance pad area will be divided into multiple 
LED illumination zones, with only one zone activated per camera frame. Cycling rapidly 
at the camera’s frame rate of 60 FPS, resulting in a complete zone cycle every 17ms.  
Because this frequency exceeds the human flicker fusion threshold, players and the 
camera module will still perceive the illumination as continuous. 
 
The selected LED strips are standard 12 V SMD-based products, offering good cost 
efficiency and a wide choice of densities (typically 60-120 LEDs/m). Each strip is rated 
at approximately 14.4 W/m, with power budgets calculated to keep the current draw 
under 2A per zone.  Table 6.2 summarizes the engineering requirements for the 
illumination system. 
 
Table 6.2 Engineering requirements for the illumination subsystem 
 
Component  Parameter Specification Unit 

LED Illumination a) Wavelength 
b) Brightness     
Uniformity  
c) Beam Angle 
d) Zone Switch Time 
e) Power per Zone 
 

a) 850 
b) ≥85  
 
c) ≥ 120 
d) ≤ 17 
e) ≤ 18 

a) nm 
b) % 
 
c) degrees 
d) ms 
e) W 

Illumination System a) Coverage Area 
b) Player Distance 

a) 2.9 * 2.9 
b) 1.83 

a) m 
b) m 

 
As summarized in Table 6.2, the 850 nm LED strips are designed to deliver at least 85% 
uniform brightness across the entire field of view, with a wide beam angle of ≥ 120° to 
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minimize shadows. Time-multiplexing with a zone switch time of ≤  17 ms reduces the 
total system load while maintaining a seamless visual.  
 
Safety and photobiological compliance were also considered. IEC 62471 guidelines 
were reviewed, and the selected 850 nm LED strips fall within Risk Group 1 at specified 
radiant exposure and player distance. Although typically arcade lighting is rarely 
completely dark, its variability, color saturation, and moving shadows make it unreliable 
for consistent pose detection. Therefore, the NIR illumination system is necessary to 
establish a stable, uniform baseline at the player’s distance of 1.83m. Providing radiant 
intensity equivalent to at least 300 lux of visible illumination for consistent landmark 
detection. Since the dance pad is intended to be portable for use in home settings, the 
lighting conditions there could be even more unpredictable, ranging from bright windows 
to dim living rooms. Including a controlled illumination system ensures consistent 
MediaPipe performance regardless of whether the system is deployed in a commercial 
arcade, dorm room, or  any other household living space.  
 
The camera module will be mounted at approximately 1.5m height with a downward 
angle of about 15-20° to capture the full play area while minimizing occlusions from 
player movement. The LED strips are currently planned to be mounted around the 
monitor frame to provide even IR coverage while avoiding direct glare into the player’s 
eyes. However, other LED mounting configurations will also be tested in SD2 to 
determine the most effective combination of coverage uniformity, ease of integration, 
and player comfort. The final arrangement will be chosen based on uniformity 
measurements and practical field trails to ensure consistent landmark detection 
performance.  

6.7 Optical System Testing and Verification  
 
The optical and illumination subsystems will be tested to confirm they meet the design 
requirements described above. Testing will focus on verifying the horizontal field of view 
covers the entire dance pad area, confirming the spatial resolution supports ~ 1 mm 
feature detection, measuring illumination uniformity across the player area, ensuring 
time- multiplexing achieves seamless coverage without perceptible flicker, and 
confirming the system achieves at least 300 lux equivalent at the player’s distance. 
 
Initial testing will involve capturing images of a printed calibration checkerboard to 
measure geometric accuracy, including field of view, distortion, and alignment[8]. 
Separately, a uniform reflectivity target such as a matte white board will be used to 
verify even illumination across the play area. Pixel intensity measurements from these 
images will be analyzed to assess both brightness uniformity and overall image quality. 
If any issues such as uneven lighting, distortion, or poor focus are identified, 
adjustments will be made to the lens focus, LED placement, or camera alignment prior 
to full integration. 
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7. Software Design 

7.1 Input/Output 
 
The primary method of input for the rhythm game is the custom-built dance pad, which 
functions similarly to a keyboard from the perspective of the operating system. During 
gameplay, the game continuously polls for input every frame, much like a traditional PC 
game responds to keyboard input. Our custom PCB includes a microcontroller (MCU) 
responsible for interpreting signals from force sensing resistors (FSRs) embedded in 
each panel of the dance pad. These signals are converted into digital keypresses and 
transmitted to the host computer over a USB connection. As far as the PC is concerned, 
the dance pad appears as a standard USB keyboard, with each directional panel 
mapped to a specific keycode. 

Table 7.1 Game Arrow Mapping 
 

Game Interpretation Keyboard Keycode Dance Pad Panel 

� W � 

🢅 E 🢅 

🢂 D 🢂 

🢆 C 🢆 

🢃 X 🢃 

🢇 Z 🢇 

🢀 A 🢀 

🢄 Q 🢄 

⏺ S ⏺ 
 

The table above shows the different keyboard inputs that are able to be used especially 
for those who would like to import the game to a computer and want to use the 
computer's built-in keyboard or an external keyboard of their choosing. This allows for 
portability for the game itself. 

This input abstraction allows for flexibility during development and testing. Although the 
dance pad is the intended method of interaction, players could also use a conventional 
keyboard to play the game. However, this alternative would lack the physicality and 
immersive experience that the dance pad is designed to provide. 
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The game maintains an internal representation of the current input state, tracking which 
directional inputs are actively being held and recording the precise timing of each press 
event. When a player steps on a panel corresponding to a direction (such as up, down, 
left, right, center, or any of the diagonals), the game updates its internal state to reflect 
that the direction is currently active. It also records the timestamp or frame number at 
which the input was first detected. This information is used for evaluating the accuracy 
of the player's timing during gameplay. 

When the player lifts their foot and the input is released, the game updates the state to 
mark that direction as no longer active. This real-time management of directional states 
and associated timing data ensures that the game can accurately judge the player's 
inputs against the expected cues defined in the song chart. A diagram of this input and 
output flow is shown in Figure 7.1. 

 
Figure 7.1 Input/Output Flow Diagram 

 

7.2 State 
 
The concept of state plays a central role in the software's logic. The input state is 
composed of several components, with each of the nine directional inputs represented 
as individual objects. These objects include a boolean indicating whether the input is 
currently held down, and if so, they also store the time or frame at which the press 
began. This enables precise tracking of how long a panel has been held and when the 
input occurred relative to the rhythm chart. 
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In addition to directional input, the system also tracks the player's current pose using the 
output from the computer vision subsystem. The pose state is updated every frame 
based on the latest keypoint and gesture analysis results. Each pose is identified by a 
label (such as “hands up” or “lean left”) and is associated with a confidence score and 
the time at which it was first detected. The pose state behaves similarly to directional 
input, allowing the game to evaluate whether the player is performing the correct pose 
at a given moment in the song. 

The system also maintains a variable that stores the most recently changed input or 
pose, useful for debugging, scoring, and triggering visual effects. At the start of each 
song, the input state is initialized to a neutral condition, with no active inputs or poses. 
As gameplay progresses, the state evolves to reflect the player’s ongoing actions. The 
flow of this state update process is illustrated in Figure 7.2, which outlines how the 
game responds to input and pose events. 

 
Figure 7.2 Note State Flow Diagram 

 

7.3 Event Handling 
 
Scoring in the rhythm game is driven by discrete gameplay events that are defined in 
the song chart. These events fall into two main categories: directional note events and 
pose-based gesture events. When the game encounters one of these events during 
playback, it checks the current input state to determine whether the player has correctly 
performed the expected action. 

Each event is associated with a specific timestamp or frame number. At the moment an 
event is triggered, the game compares the expected input or pose to the actual state of 
the player, as recorded in the current frame and recent frame history. A timing window is 
applied to judge how closely the player’s action aligns with the event. 
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The judgment criteria follow a frame-based window around the expected frame of the 
event: 

●​ If the input or pose is detected within ±3 frames, the judgment is marked as 
Perfect. 

●​ If detected within ±5 frames, it is marked as Great. 
●​ If within ±8 frames, it is considered Okay. 
●​ If the correct input or pose is not detected within 8 frames of the event, it is 

scored as a Miss. 

This scoring logic is applied consistently to both directional and pose events. However, 
additional tolerance may be applied to pose events to account for the inherent variability 
of real-time pose detection. Factors such as model inference delay, confidence 
thresholds, and temporal smoothing can introduce minor inconsistencies, so the system 
may offer a slightly wider scoring window for gestures without compromising the 
integrity of the gameplay. 

By evaluating input and pose accuracy within tightly defined timing windows, the game 
can provide responsive feedback and fair scoring that rewards player precision while 
accommodating the occasional noise present in computer vision systems. 

 
 

Figure 7.3 Event Scoring Flowchart  
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7.4 Pose Handling 
 
Using the OpenCV and Mediapipe software, we first obtain the image sent by the 
camera module that will show the person. Afterwards our machine learning model 
activates that is what allows the person to be mapped using a series of dots as seen in 
Figure 3.10. We will then retrieve the series of dots location and with this information we 
can determine if a certain pose is being performed. If a certain pose is being performed 
and recognized, then the state will be updated to reflect that. However, if a pose is not 
being performed the state will be updated to show that there is no pose that is being 
performed. 
 
Using this system there is a possibility due to artificial intelligence, that the state could 
be incorrectly updated, however with our system there is a 90% accuracy in correctly 
determining the correct state when performing these series of poses at certain portions 
of the game’s design. 

​
​

Figure 7.4 Pose State Flow Diagram 
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8. System Fabrication  
 
The fabrication of our system hinges on the careful design and implementation of its 
custom Printed Circuit Boards (PCB)’s. The system's distributed architecture comprises 
three unique designs: a central “Master Controller”, a high-current “Power Hub”, and 
nine identical modular “Input Tiles”. Each of which requires a robust and well-considered 
PCB layout. A proper layout is not merely about connecting components, but a critical 
engineering discipline that ensures signal integrity, power stability, thermal 
management, and manufacturability. The following will provide details on the layout 
philosophy and specific design choices for each of the three custom PCBs, adhering to 
industry standards such as IPC-2221A to translate the schematic designs into reliable, 
high-performance hardware.  
 
8.1 PCB Layout Strategy  
The core philosophy guiding the layout of all STEPS PCBs is one of partitioning and 
isolation. Each board is logically divided into functional blocks, such as power supply, 
microcontroller core, high-speed communication, and analog sensing. By physically 
grouping the components of each block and carefully managing the routing between 
them, we can minimize electromagnetic interference (EMI), prevent noisy digital circuits 
from corrupting sensitive analog signals, and ensure stable power distribution.   

Some key principles applied across all designs include strategic component placement 
to minimize trace lengths, especially for high-frequency signals (like crystal oscillators 
and USB data lines) and sensitive analog signals. Trace width management calculated 
based on the IPC-2221A standard. High-current power lines are made significantly 
wider to handle the electrical load without overheating, while non-critical signal lines use 
a standard width. A solid ground plane is used on at least one layer of each PCB. This 
provides a low impedance return path for all signals, which is crucial for reducing noise, 
EMI, and aiding in thermal dissipation. Various decoupling and filtering capacitors are 
placed as close as possible to the power pins of every integrated circuit. This provides a 
local reservoir of charge to handle sudden current demands and shunts high-frequency 
noise to the ground plane before it can propagate through the system.  

 
8.2 Master Control Board Layout 
The Master Controller is the central nervous system of the dance pad. Its layout is 
optimized for reliable communication with both the host PC via USB and the nine “Input 
Tiles” via I2C.   

The ATmega32U4 (U1), its 16 MHz crystal oscillator (Y1), and the crystal's loading 
capacitors (C1, C2) are placed centrally. The crystal is positioned immediately adjacent 
to the MCU’s XTAL pins. This is the most critical placement on the board, as long traces 
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to the crystal can act as antennas, introducing noise and causing clock instability, which 
would lead to catastrophic USB communication failure.  

All components related to the USB connection are grouped together at the edge of the 
board for direct external access. The USB-C connector (J2), ESD protection diodes (D2, 
D3), and the 5.1kΩ configuration resistors (R2, R3) are tightly clustered. The differential 
data lines (D+ and D-) are routed as a pair with matched lengths and minimal distance 
to maintain their characteristic impedance and protect them from noise. The 500mA 
polyfuse (F1) is placed directly after the VBUS pin of the connector to protect the host 
PC’s USB port from overcurrent events.  

Power enters from the Power Hub via connector J7. To ensure the MCU's sensitive 
analog-to-digital converter (ADC) receives clean power, the AVCC pin is isolated from 
the main 5V rail by an LC filter network (ferrite bead L1 and capacitor C3). A series of 
100nF ceramic decoupling capacitors are placed next to every VCC and AVCC pin on 
the microcontroller, providing essential high-frequency noise filtering.  

The 4-pin connector (J3) that serves as the master output for the I2C bus is positioned 
to allow for a clean run of traces from the MCU's hardware SDA (PD1) and SCL (PD0) 
pins. This minimizes the length of the bus on the master board before it is sent out to 
the daisy-chained tiles.  

 
8.3 Power Hub Board Layout 
The Power Hub board manages a mixed-power environment, handling both a 
high-current 12V circuit for the IR LEDs and a low-current, regulated 5V supply for the 
system's logic. The primary layout consideration is the strict isolation of the high-power 
switching circuits from the sensitive 5V logic circuits.  

The board is physically partitioned. Components for the 12V IR LED driver are on one 
side, and components for the 5V buck regulator are on the other. This prevents the high 
frequency switching noise from the LED driver from coupling into the clean 5V rail.  

5V Switching Regulator (LM2576): All components associated with the buck regulator 
(U2, inductor L1, Schottky diode D1, and input/output capacitors C2/C3) are grouped 
tightly together, following the layout recommendations in the component's datasheet. 
Keeping the switching loop (from U2, through L1 and C3, and back to U2's ground) as 
small as possible is critical for efficiency and minimizing radiated EMI. The 5V output 
and 12V input traces are made very wide to handle the current without a significant 
voltage drop.  

Constant-Current LED Driver (MP24894): The circuit for the LED driver is also a 
high-frequency switching regulator. The IC (U1), the main switching MOSFET (Q1), the 
sense resistor, and the flyback diode are all placed very close to one another. This 
minimizes the area of the high-current switching loop, which is essential for reducing 
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EMI. Large copper pours are used for the 12V and GND connections to the MOSFET to 
act as a heatsink, helping to dissipate the heat generated during high-current operation.  

Grounding: A carefully designed ground plane is used. While a single ground plane is 
used for simplicity, the layout ensures that the return path for the noisy LED driver 
current does not flow underneath the sensitive 5V regulator circuitry. This is a form of 
"virtual" partitioning that maintains ground integrity while preventing noise coupling. ​
 

8.4 Input Tile(s) Layout 
The nine “Input Tile” boards are the sensory and feedback nodes of the system. As they 
are identical and modular, their layout is optimized for easy assembly, reliable operation, 
and simple daisy-chaining.  

The ATtiny85 microcontroller (U4) is placed centrally, with its 100nF decoupling 
capacitor (C15) located directly adjacent to its VCC and GND pins. The connectors for 
the Force-Sensing Resistors (J7, J8) and their corresponding voltage divider resistors 
(R7, R9) are placed close to the MCU's ADC input pins (PB3, PB4). This keeps the 
analog traces short, making them less susceptible to picking up digital noise from other 
parts of the board, which could lead to inaccurate pressure readings.  

The nine addressable RGB LEDs (D7-D15) are laid out in a 3x3 grid that physically 
corresponds to their intended placement within the dance pad tile. The data line is 
routed sequentially from the MCU to the first LED's Data-In pin, and then from each 
LED's Data-Out to the next one's Data-In. The power traces feeding the LEDs are made 
sufficiently wide to handle the cumulative current draw of all nine LEDs when they are at 
full brightness.  

The "Bus IN" (J9) and "Bus OUT" (J11) connectors are placed on opposite edges of the 
board. The VCC, GND, SDA, and SCL traces run directly across the board between 
these two connectors. This layout makes it mechanically simple to connect the tiles to 
one another in a chain using short, standardized cables, greatly simplifying the final 
assembly of the dance pad.  

 

9. System Testing and Evaluation 
 
9.1 Prototype Construction 
 
Our prototype dance pad tile is constructed using a layered approach to ensure 
durability and functionality. The foundation is a solid piece of plywood, which serves as 
a rigid and stable base for all other components. On the underside of this base, small 
wooden blocks act as feet to elevate the tile and provide stability on the floor. A raised 
inner frame, made from cut pieces of acrylic, is built on top of the plywood base. This 
frame defines the active area of the tile. The Force-Sensitive Resistors are placed 
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inside the area defined by this frame, with two FSRs laid horizontally in the images. 
Circular cutouts in the base layer are intended for routing the sensor wires cleanly out of 
the tile assembly. The top surface that the player steps on is a thick sheet of clear 
acrylic. This transparent top rests directly on the raised wooden frame. When a player 
steps on the tile, their force is transferred through the top sheet into the sturdy frame, 
which protects the sensors below from being crushed. The top sheet only needs to flex 
a minimal amount to activate the FSRs.  
 

 
 

Figure 9.1 Top view: 10x10 inches central acrylic tile, 12x12 inch w/ border, secured on 
wood base w/ standoff blocks 

 
 

Figure 9.2 Top view w/ 10x10 inch central tile removed showing electrical routing holes 
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Figure 9.3 Bottom view: standoff blocks to allow for easy cable routing 

For this prototype phase, the electronics are not on a custom PCB. Instead, the wires 
from the FSRs will be connected to a solder-less breadboard, which will then be 
connected to the Arduino Mega. To test the functionality of this prototype, we first built 
the voltage divider circuit on a solder-less breadboard by connecting a 10kΩ resistor 
between the 5V rail and a separate row. The two wires from one of the FSRs inside the 
prototype tile are then connected, with one wire going to the ground rail of the 
breadboard and the other connecting to the same row as the resistor. Next, we 
connected the breadboard to the Arduino Mega by running wires from the breadboard's 
5V and ground rails to the corresponding 5V and ground pins on the Arduino. A signal 
wire is then run from the row where the FSR and resistor meet to the analog input pin 
A0 on the Arduino Mega. 

 
 

Figure 9.4 Top View: w/ Force Sensitive Resistors (FSR) placed under acrylic tile 
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9.2 Hardware and Software Testing 
After the physical connections were made, we connected via USB to the Arduino Mega 
and created a simple test program. This sketch was written to continuously read the 
analog value from the analog input pin A0 and print that value to the serial monitor. With 
the serial monitor open we observed the baseline readings with no pressure applied. 
Then, we proceeded to press on different areas of the tile with our hands and feet to 
observe how the values change. This process was used to help determine the best 
orientation for the FSRs to achieve maximum input coverage and gather the data 
needed to define a reliable software threshold for detecting a step. 

9.3 Performance Evaluation 

9.3.1 Hardware 

For the FSR-based input panels, we experimented with multiple configurations to 
determine the most responsive and consistent placement strategy. Initial testing 
compared diagonal placements, single-sensor configurations, a two-FSR cross 
arrangement, 4 FSRs around the perimeter of each panel, pairs of FSRs more towards 
the center where the player would be, and pair of FSRs on opposite ends. Ultimately, 
we found that positioning two FSRs on opposite ends underneath each step panel 
provides the most reliable activation and minimizes the chances of unregistered steps 
due to uneven foot pressure. This FSR layout is shown in Figure 9.5. However, this 
configuration will require additional stress testing during SD2 to evaluate long-term 
reliability and edge responsiveness under repeated dynamic loads. We are also 
considering incorporating the 4 FSRs around the perimeter much like how StepManiaX 
is designed.  

 

 
 

Figure 9.5 Pairs of FSRs on opposite ends chosen integration layout 
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On the microcontroller side, current integration has focused on establishing a functional 
prototype using an Arduino Leonardo on a breadboard. So far, we have demonstrated 
input registration from a single direction using one FSR. This integration is shown 
below. This served as a proof-of-concept to validate both the sensor circuit and the USB 
HID signal pathway. Although the system supports nine directional inputs in total, we 
have deferred full-scale integration until we finalize our PCB design. Once one direction 
proves stable, the same circuit can be scaled and replicated for the remaining eight 
inputs.  
 

 
 

Figure 9.6 Mini demo video pad with breadboard and single FSR integration 
 

In SD2, we plan to move away from breadboard prototyping toward soldered perf 
boards and eventually a custom PCB that will handle sensor conditioning, signal 
routing, and USB HID communication in a more compact and robust layout. We will also 
need to incorporate voltage regulation, ESD protection, and possibly signal smoothing 
to minimize noise and false triggering. These design considerations will be tested 
incrementally as we migrate from a one-sensor testbed to a fully wired 9-direction pad. 
Additional hardware reliability metrics such as actuation force, response time, and 
thermal consistency will be evaluated once all inputs are functional. 
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9.3.2 Software 

After creating the input mapping and after the creation of the game, our first step was to 
conduct a unit test of having at least one arrow to light up on the screen when a certain 
keycode is pressed. At first the arrow would not light up but after some testing we have 
the arrow to light up without fail when pressing the button if there is a signal being read.  
 
The next step was to test the arrow detection system and calibrate it correctly for the 
players timing. We had multiple trial and error of what threshold values to have for each 
of the different scores between “Perfect”, “Good”, “Bad”, “Miss”. Once we had a 
comfortable threshold, we set it and tested the game as a whole to make sure that it 
worked for any and all arrows that would appear. 
 
In terms of the computer vision aspect we first had a computer vision model that is able 
to, using a variety of points, detect what type of pose is being shown on the camera. 
This is due to using the MediaPipe computer vision model implemented in conjunction 
with the camera. We then manipulated the model to our liking through a series of test 
cases so that it is able to detect poses for example such as head scratching. The poses 
we will implement are: “What?”, “Muscle Man”, “Point Up Pose”, “Samurai Pose”, 
“Mantis Pose”, and “Tough Guy”. 
 

9.4 Optoelectronics Feasibility Study and Testing 
 
The primary aim  of the S.T.E.P.S system is to function efficiently as a rhythm game 
playable in both home and arcade environments, with a cost and power-efficient 
architecture. A critical aspect of this is the optical and illumination subsystems. When 
designing the lens, it was determined that sourcing an off-the-shelf aspherical M12 lens 
was the most practical and cost-efficient strategy, rather than developing a 
custom-manufactured optic. A custom aspherical lens would have been expensive and 
time-consuming to prototype, while commercial M12 aspherical options still met the 
project’s required field/depth of view, resolution, and IR transmission for MediaPipe 
performance. 
 
Cost efficiency also drove the camera selection. Initially, higher priced Arducam 
modules were considered, but research found the SVPRO AR0234-based global shutter 
camera to provide comparable performance for a lower price. This module supports 
M12 lenses, has no IR-cut filter, and maintains the necessary 3µm pixel pitch and 60 
FPS frame rate for reliable gameplay tracking. 
 
For the illumination system, a key design consideration was ensuring consistent player 
coverage while avoiding excessive instantaneous current demands. Arcade 
environments can have variable or dim ambient lighting, making active illumination 
important for tracking. Initially, larger LED panels inspired by other rhythm games (like 
Dance Around) were explored. However, powering all zones simultaneously would have 
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increased the peak current demands to around 69W,which would place higher demands 
on the power supply and wiring. By instead lighting only one zone at a time, the peak 
current was reduced to around 18W, supporting simpler and more efficient system 
integration. 
 
Additional layout options were explored, including ring lights, edge-mounted LED bars, 
and corner-mounted strips. These were evaluated for feasibility, wiring complexity, and 
potential glare or reflections. Ultimately, monitor-mounted LED arrays offered the best 
compromise of player coverage, mechanical simplicity, and consistent geometry relative 
to the camera, while supporting portability. 
 

9.4.1 Design Requirements and Specifications 

The optical and illumination subsystems must work together to ensure accurate, 
consistent pose tracking under diverse conditions. For the optical design, the target was 
to achieve at least 3 pixels per millimeter resolution, a frame rate of 60 FPS minimum, 
and a horizontal field of view near 77-93 degrees to reliably capture the entire 2.9 m x 
2.9 m  tracking area surrounding the dance pad from a 1.83 m distance.  The lens was 
expected to maintain minimal geometric distortion, with sufficient sharpness to resolve 
~1mm limb features. For the illumination system, the design aimed for at least 85% 
brightness uniformity, 850 nm near-IR wavelength for user comfort, and an equivalent 
brightness of 300 lux at the player distance, while managing power with a 
time-multiplexed scheme to limit peak current draw. These requirements guided 
component selection, mechanical layout, and optical design. 
 

9.4.2 Optical System Design 

The purpose of the vision subsystem is to capture spatially accurate, high-contrast 
images of the player’s movements during gameplay, supplying reliable data to the 
MediaPipe pose estimation framework for style-based scoring. The optical design is 
critical for minimizing ambiguity in landmark detection, reducing the computational 
burden on the pose estimation model, and improving real-time responsiveness. 
 
The optical system targets a minimum of 3 pixels per millimeter to resolve features 
approximately 1 mm in size on the dance pad. With a pixel pitch of 3.0µm, the required 
image-space resolution is: 
            
            3 x 3µm = 9.0 µm 
 
The system magnification M is then: 

 𝑀 = 𝐼𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 = 9.0µ𝑚

1𝑚𝑚 = 9.0
1000 = 0. 009

The focal length was calculated using an equation that has  the horizontal field of view 
in mind:  
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           𝑓 =
𝑑 * 𝑤

𝑠

𝑊 =  1830*5.67
2900 ~ 3. 63𝑚𝑚

Where: 
 is the focal length 𝑓  

 is the camera to target distance 𝑑  
 is the width of the 1/ 2.6’’ image sensor 𝑤

𝑠
 is the required horizontal scene width 𝑊

     
Considering the distance from the sensor and the dance pad, the depth of field is a very 
important factor when choosing the right lens. Multiple steps were taken to get this 
value. The calculated focal length was used to determine the depth of field. 
Hyperfocal distance H: 

             𝐻 =  𝑓2
𝑁 *𝑐 + 𝑓 = (3.63)2

2*0.005 + 3. 63 = 1321. 32𝑚𝑚
Where: 
  = focal length 𝑓
 = aperture 𝑁
  = circle of confusion for a 1/ 2.6’’ sensor 𝑐

Near Limit: 
             𝐷

𝑛
= 1321.32*1830

1321.32+(1830−4) =  768. 19𝑚𝑚
 
Far Limit: 

                𝐷
𝑓

= 1321.32*1830
1321.32−(1830−3.63) =− 4787. 68 𝑚𝑚 (∞)

Through these calculations the depth of field was determined to be 856mm  ∞ →
  
  
 
This confirms a wide-angle lens with a focal length closer to 4 mm is needed, consistent 
with the prototype lens choice (CIL042). That lens, with a diagonal FOV near 97° 
(translating to roughly 88° horizontal on the AR0234 sensor), ensures the system can 
fully view the dance pad area without demanding excessive installation height or 
extreme tilt angles. 
 
Despite this favorable depth of field, the limited vertical coverage poses a practical 
constraint. A wider angle lens, such as a 3.2 or 2.8mm focal length, may provide a 
better balance between full scene coverage and sufficient image resolution for reliable 
AI tracking. These lenses offer increased vertical field of view, ensuring the player 
remains fully visible anywhere on the pad while maintaining sufficient detail for pose 
estimation. The same DOF calculations were done with the 3.2 mm focal length as well. 
 

             𝐻 =  𝑓2
𝑁 *𝑐 + 𝑓 = (3.2)2

2.3*0.005 + 3. 2 = 893. 63𝑚𝑚
Where: 
  = focal length 𝑓
 = aperture 𝑁
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  = circle of confusion for a 1/2.6’’ sensor 𝑐
Near Limit: 
             𝐷

𝑛
= 893.63*1830

893.63+(1830−3.2) ~602𝑚𝑚
 
Far Limit: 

                𝐷
𝑓

= 893.63*1830
893.63−(1830−3.2) =− 1752. 46 𝑚𝑚 (∞)

 
 
 
 
The selected 3.2 mm M12 aspherical lens was determined to be optimal for the 
S.T.E.P.S system’s vision needs. The primary requirement was to achieve a wide 
horizontal field of view (~87°) to cover a 2.9 m x 2.9 m player  tracking area from a 
camera placed 1.8 m away. Depth of field calculations showed that, with an aperture of 
f/2.3 and a circle of confusion of 0.005 mm( typical for a 1/2.6’’ sensor), the hyperfocal 
distance is approximately 893 mm. This means that any subject located 0.6 m or farther 
from the camera remains in acceptable focus, perfectly encompassing the full player’s 
body in the play zone. Because of this extremely large DOF, no autofocus is required, 
and fixed- focus imaging is sufficient  for accurate pose tracking using MediaPipe. The 
3.2 mm lens also provides acceptable pixel density for AI-based landmark detection and 
maintains real-time imaging performance at 60 FPS when paired with the global shutter 
AR0234 camera. Therefore, this lens was selected for its excellent balance of field 
coverage, focus stability, and cost efficiency. 
 
The chosen lens (CIL034-F2.3- M12ANIR) was evaluated against the project’s optical 
requirements. Table 9.1 summarizes how it meets the key constraints related to the field 
of view, resolution, DOF, and AI tracking support. 
 
Table 9.1 Lens Selection Justification 
 
Lens Spec Requirement 3.2 mm M12 Lens Performance Meets Requirement 

Horizontal Field of View 
(FOV) 

~ 87 ° at 1.8 m distance Yes 

Depth of Field (DOF) ~ 0.6 m to ∞ (fixed focus) Yes 

Pixel resolution ~2.5- 3 px/ mm over 2.9 m FOV Yes 

Frame Rate Compatibility 60 FPS @ 1080p with global 
shutter 

Yes 

AI Tracking Performance Clear full-body pose detection 
across tracking zone 

Yes 
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Aberration/ distortion 
Control 

Minor edge distortion, 
acceptable for vision-based 
tracking 

Mostly 

Cost and availability  ~ $40 Yes 
 
 
Table 9.2 Depth of Field Calculation for 3.2 mm f/2.3 lens at 1830 mm subject   
distance. 
 
Parameter Value Units 

Focal Length 3.2 mm 

Aperture  2.3 — 

Circle of Confusion 0.005 mm 

Subject Distance 1830 mm 

Hyperfocal Distance 893.63 mm 

Near Focus Limit  601.14 mm 

Far Focus Limit  ∞ mm 

Effective DOF 0.6 m to ∞ meters 
 
The calculations in table 9.2 confirm that the fixed-focus lens design is sufficient for 
full-body imaging at the target distance, eliminating the need for autofocus and ensuring 
reliable MediaPipe performance. 
 

9.4.3 Illumination System design 

The optical system’s effectiveness in detecting pose landmarks is significantly 
influenced by the quality and consistency of scene illumination. To ensure accurate and 
robust tracking performance in a variety of ambient lighting conditions, the S.T.E.P.S 
system employs a custom-designed near-infrared(NIR) LED illumination array operating 
at 850 nm. This wavelength was chosen because it is largely invisible to the human eye, 
minimizing player distraction, while maintaining high sensitivity on the AR0234 global 
shutter RGB camera used in the vision subsystem. 
 
The illumination system consists of four time-multiplexed IR LED zones, positioned 
along the top, bottom, left, and right edges of the display frame. Each zone is 
independently controlled and provides directional illumination across the play area. This 
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setup enables zone-based pose segmentation by sequentially lighting one direction at a 
time in sync with the camera capture, without requiring a separate LED per pad tile. 
 
These zones are time-multiplexed using a custom microcontroller driver circuit to avoid 
interference between overlapping beams. Each zone activates sequentially at a high 
enough frequency(60-90Hz) ensuring the player remains well-lit from multiple directions 
while minimizing flicker and thermal buildup. This time multiplexed design avoids 
overexposure from simultaneous LED output, improves lighting uniformity, and 
enhances MediaPipe’s ability to consistently track pose landmarks across the entire 
play area. 
 
Each LED zone is mounted around the perimeter of the game area, positioned to 
illuminate the player from multiple angles. While final mounting angles are still being 
refined, the design assumes slight inward tilts to maximize coverage uniformity. While 
the total LED power draw is moderate, concentrated NIR output can still result in 
localized heating. To mitigate any user discomfort, such as excessive sweating due to 
proximity to strong IR emitters, the system spreads its output over time and space. 
Power measurements and eye safety limits are being reviewed against IEC 62471 
photobiological safety standards. Preliminary analysis indicates the system remains well 
below Class 1 limits, but formal verification will be completed in SD2 through irradiance 
measurements and angular spread modeling. 

9.4.4 Optical Illumination System Testing and Verification 

The optical and illumination system will be carefully tested to ensure they meet these 
engineering requirements before integration into the full S.T.E.P.S cabinet. Testing will 
focus on verifying that the field of view fully covers the 2.9 m x 2.9 m tracking area 
surrounding the dance pad, confirming spatial resolution supports ~ 1mm feature 
detection, measuring illumination uniformity across the player’s body, ensuring 
time-multiplexed zones maintain seamless perceived lighting without flicker, and 
verifying that a minimum of 300 lux equivalent illumination is achieved at a player 
distance of 1.83 m. 
 
Geometric and image quality verification will be carried out using a printed calibration 
checkerboard pattern to check the camera’s coverage, measure geometric distortion, 
and confirm the intended horizontal field of view. Separately, a uniform reflectivity target 
will be used to verify even illumination across the dance pad area. Pixel intensity 
measurements will then be analyzed frame-by-frame to confirm both brightness 
uniformity and signal-to-noise performance, ensuring no major shadows or hotspots 
occur during typical player movements. These tests will be performed on individual 
components during senior design I, then the integrated system for senior design II. 
 

9.4.5 Qualitative Distortion Assessment 

To evaluate optical distortion introduced by each lens, checkerboard calibration targets 
were imaged at the standard system mounting height (~63 inches) using the 3.2 mm, 
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2.8 mm, and 4.2 mm lenses. While all three lenses produced sharp central focus under 
proper lighting, noticeable differences in geometric fidelity were observed. 

The 2.8 mm lens, with its 120° horizontal field of view, exhibited significant barrel 
distortion, particularly near the image periphery. Straight lines on the checkerboard 
became visibly curved, and square tiles appeared stretched at the corners. This level of 
distortion is known to interfere with AI-based pose estimation, especially in landmark 
tracking for limbs and extremities near the edge of the frame. 

By comparison, the 3.2 mm lens showed milder distortion, though some barrel warping 
was still evident. A checkerboard test image captured with this lens  demonstrated 
minor stretching of squares near the frame edges, but central geometry remained 
well-preserved. This suggests that while the 3.2 mm lens is not perfectly rectilinear, its 
distortion is within acceptable limits for MediaPipe’s pose estimation pipeline and does 
not require software-based undistortion for prototype use. 

The 4.2 mm lens offered the least distortion, but its narrower field of view risked cutting 
off portions of the dance pad. As such, the 3.2 mm lens was selected as an optimal 
balance between geometric fidelity and scene coverage. If future development requires 
full-scene imaging with wider-angle lenses, OpenCV-based undistortion tools may be 
explored for real-time rectification. 

9.4.6 IR Sensitivity Verification 

To validate that the chosen camera (AR0234 NoIR configuration) could detect infrared 
(IR) light from the 850 nm LED illumination system, a simple IR sensitivity test was 
performed. A known IR-emitting source (a standard television remote and active LED 
strip segment) was placed in close proximity to the lens under typical room lighting. 
When observed through the camera’s live feed, both sources appeared visibly 
illuminated on the image sensor confirming that 850 nm wavelengths were reaching the 
sensor and not being blocked by an internal IR-cut filter.  

This observation confirms the optical subsystem's compatibility with the NIR illumination 
zones. Final irradiance and synchronization validation will be performed in SD2, but the 
preliminary results affirm that the system can reliably image in the near-IR spectrum and 
support pose tracking under IR-only conditions. 

9.5 Overall Integration 

9.5.1 Hardware 

The hardware integration of the STEPS system focuses on the seamless coordination 
between the Pad PCB, FSR input mechanisms, RGB LED feedback, display, and power 
delivery. The Pad PCB serves as the central hub for all peripheral connections, routing 
input signals from the FSR sensors and output signals to the RGB LED strips 
embedded in the pad. The camera module and its custom lens are mounted in 
alignment with the display, while the LED strip around the display receives simple on/off 
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signals from the MCU through the LED PCB. A central 12V, 5A SMPS provides the 
primary power supply, safely distributing energy to both high-current loads like the LED 
strips and low-power components like the microcontroller. By centralizing both control 
and power at the Pad PCB, the overall design ensures minimal latency, reliable sensor ​
reading, and predictable system performance under continuous use. 
 

9.5.2 Optical and Illumination Systems 

The optical and illumination systems will be integrated with the broader S.T.E.P.S 
architecture through synchronized control managed by the system microcontroller. The 
existing time-multiplexed illumination strategy, previously described, will be coordinated 
with camera exposure to maintain uniform, flicker-free NIR lighting. Mechanically, the 
camera module and LED arrays will be mounted to the monitor structure to ensure 
consistent geometry and coverage across all play environments. This integration 
supports real-time pose estimation with minimal latency, allowing seamless interaction 
between hardware and gameplay logic. 
 

9.5.3 Software 

After ultimately deciding on using the MediaPipe interaction of computer vision, the 
camera will be able to send video footage to the computer which will then be interpreted 
by the computer vision model for pose detection. What will happen behind the scenes is 
that by using the camera that is pointed towards the player playing, the camera will 
capture live video footage of the person to which afterwards will be sent to the computer 
that will be running the MediaPipe computer vision model that we use for pose 
detection. How the computer vision model works is that by having a series of points or 
landmarks being applied to the person though the computer vision model itself, then 
using some code, those points or landmarks will then be interpreted as poses 
depending on the threshold set. 
 
Afterwards, inside the game itself we will have a game implementation of the pose 
recognition system by having indicators on screen that tell players when to perform the 
certain pose that appears. Depending on the timing of the pose being performed, then 
an accuracy score between “Perfect”, “Great”, “Good” or a “Miss”.  
 
For the game integration itself, we will be using Godot and we will also be using Git for 
our version control. While creating the game we created a series of nodes and sprites 
that will start from the bottom of the screen and work their way up in a scrolling motion.  
 
As these notes are scrolling upwards, there is a detection system for deciding the timing 
that players who play the game decide the score to give them depending on the timing 
threshold. Whether that be “Perfect”, “Great”, “Good” or a “Miss”.  
 
Furthermore, we added a system that allows for the creation of songs. By having the 
inputs being pressed, the code will allow the user to add the arrow at that specific 
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timing. Although this system is not fully implemented yet with the UI, we plan on doing 
so during SD2 but we do however have the script done for it.  
 
Overall our future plans for SD2 will be more focused on the implementation of song 
creation as well as the creation of a better main menu than we have now. 
 

9.6 Plan for SD2 

9.6.1 Hardware  

Weeks 1–3​
​
Hardware development will begin with the fabrication and bring-up of the main Pad 
PCB. During week 1, we plan to finalize and submit the PCB order to manufacturers 
such as JLCPCB, allowing time for fabrication and shipping. Once received, the focus 
will be on assembling the board and verifying basic electrical functionality. Key bring-up 
tasks include checking voltage regulation, USB HID enumeration, and sensor input 
signal integrity. 

By week 3, if any issues arise with the initial PCB revision, we will allocate time to make 
necessary corrections and resubmit an updated board. In parallel, we will begin early 
mechanical work, including cutting sensor foam, aligning top acrylic panels, and 
preparing mounting layers for the FSR sensors. 

Weeks 4–6​
​
Once the PCB is validated, we will shift focus to full integration of the FSR sensors and 
the RGB LED feedback system. Directional pad inputs will be tested end-to-end, 
verifying whether foot pressure on panels consistently triggers USB inputs on the PC. 
Around week 5, we will begin wiring and securing the LED system, ensuring zoned 
control between center pad LEDs and the outer illumination strips. 

Power delivery will also be validated during this phase. We will monitor thermal 
behavior, voltage stability, and current draw under load to ensure safe and consistent 
operation of the system when all lights and sensors are active. 

Weeks 7–10​
​
 These weeks will be focused on system-wide integration between the input system, 
LED feedback, and game software. The RGB LED zones will be programmed to reflect 
gameplay events (e.g., scoring feedback, pose prompts), and stress tests will be 
conducted to measure timing accuracy, communication reliability, and input 
responsiveness during gameplay. 
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Cable routing, connector strain relief, and physical durability checks will also be 
performed to verify that the full system can withstand repeated foot strikes and 
extended play sessions without mechanical failure. 

Weeks 11–12​
​
Final hardware debugging, mechanical reinforcement, and gameplay validation will be 
conducted during this period. Key deliverables include ensuring all FSR panels are 
mechanically aligned and electrically reliable, verifying that LED feedback occurs in 
sync with in-game events, and confirming that the power system remains stable across 
sessions. Additionally, we will run full-system QA tests to check for loose components, 
exposed wiring, and proper enclosure sealing. 

9.6.2 Optical and Illumination Subsystems 

Weeks 1–3​
​
The first three weeks will focus on camera setup and initial calibration. The camera will 
be physically mounted above the 2.9 m × 2.9 m play area at approximately 1.8 m 
height. Mount alignment, angle tuning, and mechanical fastening will be completed to 
ensure stable and complete field-of-view coverage. 

Following installation, field-of-view calibration using printed checkerboard targets will be 
conducted. This step will validate spatial resolution and ensure that the camera meets 
the ~1 mm feature detection accuracy needed for effective pose estimation using 
MediaPipe. 

Weeks 4–5​
​
Once the camera is calibrated, we will install and configure the 850 nm IR LED 
illumination zones. These zones will be arranged to provide even coverage of the entire 
play area, based on CAD-modeled light cone distributions. Physical alignment and 
beam spread will be verified against these models, and power measurements will be 
taken to confirm irradiance levels remain within safety thresholds. 

After installation, we will test for interference between IR illumination and pose 
estimation accuracy under various ambient lighting conditions. If necessary, brightness 
and duty cycles will be adjusted using zoned control and time-multiplexing strategies. 

Weeks 6–8​
​
Integration with the software pipeline begins in this phase. Real-time video from the 
camera will be processed using MediaPipe, and body keypoints will be passed to the 
gameplay logic for triggering pose-based events. We will validate synchronization 
between pose inputs and the game system, as well as evaluate any camera lag or 
frame drops. 
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Metrics such as zone irradiance uniformity, tracking consistency, and image clarity will 
be quantitatively evaluated using calibration tools and comparison charts. 

Weeks 9–12​
​
Final adjustments, validation, and debugging will be performed. This includes checking 
for optical distortions, verifying photobiological safety of the IR LEDs, and stress testing 
MediaPipe under rapid player movement. Any remaining issues related to tracking loss, 
misclassification, or latency will be resolved before the system is declared ready for 
demonstration and integration with gameplay scoring logic. 

9.6.3 Gameplay system 

Week 1-3​
 
During SD2 with respect to the game integration aspect, the first three weeks will 
consist of improving the game integration on the coding side. We will be working on 
improving the arrow key integration, improving on adding a series of arrows that will 
appear from the bottom of the screen and move their way up, as well as improving 
system in the game that is able to detect the arrows that need to be clicked and if they 
are clicked depending on the timing they will receive a certain amount of points. 
 
In terms of arrow integration, we will be working on where the various arrows will be 
placed on the screen, making the arrows prominent and large enough for the users to 
be able to see them without having difficulty as to determining what arrow they need to 
be pressing while playing the game.  
 
In terms of the series of arrows appearing from the bottom of the screen and making 
their way up, we have plans using various trial and error methods to be able to complete 
this task. At the end of the trial and error process the goal is to finalize the 
implementation of the detection arrow key system.  
 
 
Weeks 4-6  
​
Weeks four through six will consist of having a completed and finalized arrow key 
integration, after some trial and error have a plan of integrating both the series of arrows 
and the arrow detection system.  
 
We will accomplish this by having just a few arrows first as a test run and work on the 
detection system until it is able to pass the test case. Once the detection system is able 
to pass the unit test, the next step will be to complete the series of arrows scrolling 
across the screen. 
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Weeks 7-10​
 
In the following weeks seven through ten, we will be focusing on implementing all of the 
pose events into the game. There are a total of 6 different poses that we plan on 
implementing for the pose detection system. Those poses include: “What?”, “Muscle 
Man”, “Point Up Pose”, “Samurai Pose”, “Mantis Pose”, and “Tough Guy”. 
 
The goal is to have the poses show up on screen when the event happens using an 
event handler mechanism implementation. Furthermore have an accuracy 
implementation sequence that depending on the timing of performing the pose adds the 
points scored to the players total score towards the end of the song being played. 
 
Weeks 11-12​
 
These weeks we will be doing extensive testing on all 6 of the different poses on how 
accurate they are as well as activation during gameplay. Furthermore, we will be doing 
more testing with the arrows and the pose events.  
 
How we will accomplish this, is by doing a series of unit tests making sure that each 
action is able to pass a test that we assign it. Then after it has passed one, we test for 
edge cases so that they are accounted for.  
 
Week 13 
 
In this week, we will be focusing on making full charts with different difficulties, with each 
song having different difficulties and charts for each difficulty.  
 
Like in our software diagram, Figure 2.8, we will work on creating a menu that will allow 
the player to be able to choose a difficulty for songs. The different difficulties that will be 
included in the menu will be easy, medium, or hard. The different difficulties will change 
the game based on the amount of arrows being created. Easy will have a small number 
of arrows appear at any given time, medium will have a moderate increase to the 
number of arrows, and hard will have the most increase compared to easy. 
 
Weeks 14-16​
 
In the final weeks we will be asking different people whether that be our advisors, 
friends and family, and even test the game on our own for play testing and quality 
assurance testing. After this, depending on the feedback received, we can change and 
modify as need be. 
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10. Administrative Content 
10.1 Budget​
 
We are aiming to limit the budget of this project to $500. Table 10.2 as shown below 
lists the bill of materials. Although we want to minimize costs, we also want to ensure 
we have materials that have a good enough quality so that they are reliable and 
efficient. This includes the framework (hard materials), PCB, RGB LEDs, LED ring, 
camera module, and force-sensing resistors. If any of these were bought very cheap 
without taking into account better affordable options, we would face consequences.  
 
10.2 Bill of Materials  
 
Table 10.1 Overall Project Itemized Bill of Materials 
 

Item Dimensions Estimated 
Unit Cost 

Quantity Estimated 
Total Cost 

SVP AR0234 Sensor 38mm x 38mm  $65.99 1 $65.99 

Commonlands CIL034 lens 20mm x 14mm $47.00 1 $47.00 

SMD3528 Near Infrared 
LEDs 

5m x 0.01m $45.99 1 $45.99 

PCB undetermined $45.85 1 $45.85 

Force-Sensing Resistors 12.7mm x 57mm $5 36 $90 

Plywood 36 `` x 38 x ¼ `` $50 1 $50 

Aluminum Square tubing 38`` x 38`` x 1/8`` $10 6 $60 

Polycarbonate Sheets 11.75 ``x 11.75`` 
x 0.25 `` 

$0 9 $0(already 
have) 

Non-Slip Rubber Mat 2ft x 4ft x 3mm $20 1 $20 
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Table 10.2 Master Controller Board (1 required) Itemized Bill of Materials​
 

Reference Designator Quantity Component Estimated Cost 
(USD) 

U1 1 ATmega32U4RC-AU 
Microcontroller 

$4.50 

Y1 1 16 MHz Crystal $0.40 

Subtotal $5.90 

​
Table 10.3 Power Hub Board (1 required) Itemized Bill of Materials​
 

Reference Designator Quantity Component Estimated Cost 
(USD) 

U1 1 MP24894 LED Driver IC $2.00 

U2 1 LM2576T-5.0 5V Regulator $1.50 

Subtotal $3.50 

 

Table 10.4 Tile Board (9 required) Itemized Bill of Materials 
 

Reference 
Designator 

Qty per 
Board 

Total 
Qty 

Component Est. Cost 
per Unit 

Total Est. 
Cost (USD) 

U4 1 9 ATtiny85-20PU 
Microcontroller 

$1.80 $16.20 

D6-D14 9 81 APA-106-F5 
Addressable LED 

$0.25 $20.25 

Subtotal $36.45 
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Table 10.5 PCB board total cost evaluation table 
 

Board Estimated Cost (USD) 

Master Controller $5.90 

Power Hub $3.50 

All 9 Tile Boards $36.45 

Grand Total (Electronic Components) $45.85 

 
10.3 Distribution of Worktable 
 
Table 10.6 Distribution of responsibilities of each member for this project 
 
Name Major Responsibilities 

Andres​
Abrams 

Computer ​
Engineer 

Software Assistant 

Software Design and Implementation 

Game Design 

 
Name Major Responsibilities 

Blake ​
Whitaker 

Electrical​
Engineer 

Hardware Lead 

PSU Design and Implementation 

PCB Design 

 
 
Name Major Responsibilities 

Jani Jon 
Lumibao 

Computer ​
Engineer 

Hardware Assistant 

MCU Selection and Implementation 

Embedded Programming 
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Name Major Responsibilities 

Christopher ​
Solanila 

Computer​
Engineer 

Project/Software Lead 

Website Design and Management 

Software Design and Implementation 

Game Design 

Computer Vision Implementation 
 

 
10.4 Project Milestones for SD1 and SD2 

10.4.1 Project Milestones for SD1 

Table 10.7 Project Milestones SD1 
 
Due Week Advancement 

1 Group Creation and have base idea 

2 Researching and Innovating based off idea 

3 Divide and Conquer Document completed, Have at least 1 
committee member 

4 Meet for revisions (if any) of Divide and Conquer Document with 
committee members, upload revised document into group website 

4-5 Individual Research 

6 40 pages finished 
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Name Major Responsibilities 

Kaila ​
Peeples  

Photonics 
Engineer 

Lens Design and Simulation 

Camera Module Integration 

Optical and Illumination System Optimization 

Image Quality Calibration 

Illumination planning and testing 



 

7 Meet for revisions (if any) with committee members 

7-8 Testing of components  

9 100 pages finished turn in Midterm Report 

10 Meet for revisions (if any) with committee members 

10-11 Start on video, finishing touches to 120 page document 

12 150 page document finished, mini video finalized 
 

10.4.2 Project Milestones for SD2 

Table 10.8 Project Milestones for SD2 
 
Target Completion Week Advancement 

2 Camera system & PAD Completion 

4 Camera Hardware Completion  

5 NIR illumination System Completed 

6 Game Completion, Optical Calibration, and Camera detection 

7 Pad and Game Integration 

8 Camera-to-Game Integration 

8 NIR illumination System Integration 

12 Full System Testing and Debugging 

16 Final Day and Live Demo 

​
​
 

147 



 

10.4.3 Development Roadmap 

We aim to complete the following specific tasks over the course of SD1 and early SD2. 
These objectives are listed in the rough order we plan to execute them, starting from 
component acquisition and hardware assembly to software integration and vision-based 
features. 

 

1.​ Acquire all essential components: Order FSR sensors, RGB LEDs, MCU, 
USB connectors, power regulators, 850nm LED strips, and a suitable camera 
module according to the finalized bill of materials.​
 

2.​ Design and fabricate the dance pad platform: Construct the pad frame using 
durable plywood and aluminum supports. Mount the top transparent acrylic 
panels and add non-slip material underneath to ensure player stability.​
 

3.​ Design a custom PCB schematic: Use KiCad or similar EDA tools to create a 
schematic and board layout connecting all pad components. Allocate GPIOs for 
sensors and LEDs, and ensure proper voltage regulation and USB connectivity.​
 

4.​ Order and assemble PCB: Send the PCB design to manufacturers such as 
JLCPCB for fabrication. Once received, solder all required components and 
headers for interfacing with sensors, LEDs, and the MCU.​
 

5.​ Write and test microcontroller firmware: Develop firmware capable of reading 
analog signals from FSRs and converting them into digital inputs. Implement 
USB HID functionality to send these signals as keypress events to the PC.​
 

6.​ Test PCB + FSR response time: Run debugging scripts to verify that each 
sensor input registers with low latency (<10ms), ensuring responsiveness 
suitable for rhythm gameplay.​
 

7.​ Integrate pad input with PC: Confirm successful USB HID functionality by 
testing real-time inputs using diagnostic tools or key input test pages on a 
computer.​
 

8.​ Initialize the GitHub repository: Set up a shared repository with version control 
for the team. Include directories for firmware, hardware schematics, and game 
engine development.​
 

9.​ Begin a Godot project for the rhythm game engine: Set up a new project in 
Godot 4.3 with basic scene structure, a title screen, placeholder assets, and a 
framework for spawning notes in sync with music.​
 

10.​Map keyboard inputs to note triggers: Bind USB HID inputs to game actions in 
Godot. Simulate gameplay using a keyboard before full pad integration to test 
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timing and hitbox accuracy.​
 

11.​Design and implement a basic UI: Build out essential game UI elements such 
as a song selection screen, live scoring display, and feedback for note accuracy 
using visual and textual cues.​
 

12.​Write a chart parser and loader: Develop functionality to import step charts 
from external files (e.g., JSON format) and dynamically spawn notes according to 
their timing and track.​
 

13.​Connect the pad to the game: Integrate the full dance pad input with the game 
logic, ensuring each physical press correctly triggers corresponding note hits and 
feedback during gameplay.​
 

14.​Integrate camera with Raspberry Pi: Connect the camera to the Raspberry Pi 
and confirm live video can be accessed and streamed to the PC via a local 
network or direct USB interface.​
 

15.​Use a pre-trained pose detection library: Utilize computer vision tools such as 
OpenCV, MediaPipe, or OpenPose to extract body key points from the live 
camera feed in real time.​
 

16.​Detect key poses and gestures: Program the system to recognize predefined 
poses like the Muscle Man, What?, Mantis, and Samurai poses based on body 
key point configurations.​
 

17.​Develop a basic Style Score system: Create a scoring extension that awards 
bonus points for expressive poses and movement patterns detected during 
gameplay.​
 

18.​Build a simple chart editor UI: Design a chart editing tool that allows users to 
import songs, manually place step notes, and export them into a compatible 
format for game testing.​
 

19.​Design a custom aspherical lens system: Develop a lens assembly capable of 
resolving fine motion (∼1mm accuracy) across a 40cm field of view when placed 
1.8 meters away.​
 

20.​Generate accurate ray layouts in Zemax: Simulate optical performance of the 
lens system in Zemax to evaluate sharpness, chromatic aberration, and field 
distortion.​
 

21.​Select a low-cost camera sensor: Choose a cost-effective camera module and 
tune its settings to reduce resolution and field of view to ≤1.5MP, optimizing 
frame rate and bandwidth.​
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22.​Prototype and test multiple lens configurations: Assemble and test several 
lens-camera combinations to confirm alignment and capture quality are 
acceptable for pose detection.​
 

23.​Design a time-multiplexed LED illumination system with zoned control: 
Build a lighting setup that evenly illuminates the player during movement while 
avoiding excessive glare or power draw.​
 

24.​Quantitatively evaluate optical performance: Use standardized test charts and 
calibration tools to assess image clarity, distortion, and pose detection reliability 
in the intended environment.​
 

25.​Document each milestone: Maintain clear documentation through GitHub 
commits, photos, and regular updates, ensuring the project remains transparent 
and demo-ready for SD1 and SD2 reviews.​
 

11. Conclusion 
The Style Tracking Expressive Pad System (STEPS) project was envisioned as a 
modern, expressive, and feature-rich reimagining of the arcade dance pad. Rooted in a 
deep appreciation for rhythm-based games and performance-driven technology, STEPS 
seeks to push the boundaries of what dance gaming can be, not just in terms of 
challenge and skill, but also in terms of artistic expression, immersion, and interaction. 
Unlike standard arcade systems that limit players to four or five directional panels, 
STEPS introduces nine directional inputs, expanding gameplay into a new physical 
dimension that encourages creativity, agility, and style. This redesign opens the door to 
both casual users who want to explore dance playfully and competitive users aiming to 
master complex movement patterns.​
​
Inspiration for STEPS came from analyzing a wide range of existing arcade machines. 
Some machines offer RGB lighting effects. Others offer unique gameplay variations like 
double panels or hand sensors. However, there was a lack of unified systems that could 
combine style-based expression, advanced lighting, enhanced input granularity, and 
computer vision.  

With STEPS, we aim to bring all of those technologies together into a cohesive and 
upgradable platform. The result is a product that is not just a dance controller, but a 
performance stage, an interactive installation, and a learning tool all in one. 

The system includes nine FSR-based directional input zones arranged ergonomically to 
support full-body footwork. The addition of force-sensitive resistors instead of traditional 
microswitch panels provides more precise readings, enabling us to capture not just 
when a player steps, but also how hard they step.  
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This opens up new design possibilities for rhythm games that can respond dynamically 
to the energy or weight of a dancer’s movement. Moreover, each direction includes 
paired FSRs, further enhancing accuracy and supporting redundancy or calibration 
features down the line.​
​
As the MCU of our system, we use a single Arduino Leonardo microcontroller, chosen 
for its native USB HID support and simple integration with PC-based rhythm games. 
Unlike serial communication or custom drivers, USB HID allows the STEPS system to 
be recognized as a standard input device on most operating systems, which simplifies 
the development and testing process. Future upgrades could include Bluetooth LE or 
Wi-Fi for wireless play, making setup more flexible and less cluttered.​
​
The STEPS system is powered by a 12V, 5A external enclosed Switch-Mode Power 
Supply (SMPS), chosen for its efficiency, safety, and ability to handle the system's 
combined high-current and low-current demands. It provides stable power for both the 
RGB LED strips and sensitive components like the Arduino Leonardo. Proper filtering 
and decoupling built into the custom PCBs ensure noise from the SMPS does not affect 
performance, making this a reliable and safe power solution for the dance pad.​
​
The use of RGB LED strips around the dance pad and around the display unit further 
boosts immersion. While the LED panels currently support basic on/off functionality for 
illuminating the player, their modular design allows us in the future to program it to have 
advanced lighting effects and animations. These lighting elements also enhance 
computer vision performance by providing backlighting and visual contrast for foot 
tracking.  

A camera module with a custom-made lens faces the pad and helps track limb 
movement, enabling gesture recognition or footwork quality analysis and maximizing the 
camera’s accuracy for computer vision, creating a bridge between motion capture and 
rhythm-based play.​
​
By separating the input detection and visual feedback functions, the STEPS architecture 
maintains modularity and avoids overloading the microcontroller. The Pad’s PCBs focus 
solely on reading FSR data and controlling basic LED states, while future improvements 
may offload animations to a dedicated LED controller. This separation ensures cleaner 
timing and responsiveness, especially in latency-sensitive rhythm games.​
​
From a user experience standpoint, STEPS is designed to feel intuitive and engaging. 
New players are given freedom to explore a wider movement space without sacrificing 
accuracy, and experienced players can use subtle foot pressures or directional changes 
to add flair to their performances. Beyond entertainment, STEPS has educational 
potential, whether in dance studios for training foot placement, or in physical therapy 
settings for improving balance and movement coordination. Its flexibility makes it a 
useful tool for both game designers and movement educators.​
​
Another benefit of STEPS lies in accessibility. By integrating pressure-sensitive input 
rather than forceful switches, the pad requires less physical impact, making it more 

151 



 

comfortable for a wide range of players. With further refinement, the system could 
incorporate audio feedback, accessibility overlays, or adjustable lighting profiles to 
support neurodivergent users or players with visual impairments.​
​
Looking forward, there are many directions this system can evolve. For instance, the 
addition of haptic feedback (e.g. vibration) could give players tactile response for combo 
streaks or rhythm timing.  

On the software side, pairing STEPS with AI dance recognition models could lead to 
training tools that give real-time tips or scoring based on style rather than accuracy 
alone. More advanced LED animations, sound-reactive lighting, or player-generated 
choreography libraries could make STEPS a platform for dance-based expression in 
gaming, performing arts, or interactive museum installations.​
​
In conclusion, the STEPS dance system is more than just an upgrade, it’s a 
forward-thinking redesign of what dance input hardware can be. It introduces technical 
innovation without forgetting its core purpose: to make dance more expressive, more 
interactive, and more fun. Through carefully selected components, modular design, and 
a focus on player experience, we believe STEPS lays the groundwork for a new 
generation of rhythm-based interfaces. Whether it’s in the arcade, at a competition, in 
the studio, or at home, STEPS has the potential to move not just players, but the entire 
dance gaming community, forward. 
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Appendix B - ChatGPT prompts and outcomes 

[43] What would be the best way to create a rhythm game for a beginner? 
Would using a game engine be best or are there other alternatives to 
complete this objective? 

ChatGPT said: 

Creating a rhythm game as a beginner is totally achievable and a great project to 
learn programming, game logic, and audio synchronization. Here's a breakdown 
of the best approach: 

🎮 Best Way: Use a Game Engine 
Using a game engine is strongly recommended for beginners because it handles 
many hard parts (rendering, audio, input, timing) so you can focus on the 
gameplay. 

Top Beginner-Friendly Game Engines: 

1. Unity (with C#) 
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●​ ✅ Strong community, lots of tutorials​
​ ​ ​ ​ ​ ​ ​ ​ ​                    

●​ ✅ Built-in support for music syncing, 2D and 3D​
 

●​ ✅ Asset Store has ready-made rhythm tools​
 

●​ 📘 Tutorial: "How to make a rhythm game in Unity" (e.g., Brackeys’ or 
Code Monkey's guides)​
 

2. Godot (with GDScript or C#) 

●​ ✅ Lightweight, open-source, no royalties​
 

●​ ✅ Very beginner-friendly scripting​
 

●​ ✅ Good 2D support​
 

●​ 📘 Search: “Godot rhythm game tutorial”​
 

3. Scratch (for absolute beginners or younger users) 

●​ ✅ Drag-and-drop programming​
 

●​ ✅ Great for learning the logic of timing and input​
 

●​ ❌ Limited in terms of polish and performance​
 

 

🎵 What a Rhythm Game Needs 
●​ 🎧 Beat Detection or Timing System (e.g., hit notes on the beat)​

 
●​ 🎮 Input Sync (e.g., player presses buttons in time)​

 
●​ 📊 Scoring System​

 
●​ 🎬 Visual Cues (e.g., arrows, circles, or notes moving)​

 
●​ 🕒 Timing Accuracy (Perfect, Good, Miss)​

 

Game engines make all this much easier by providing audio timing APIs and 
visual tools. 
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​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​          

🧑‍💻 Alternative (but harder) Routes 
If you don’t use a game engine, here’s what you’ll face: 

1. Custom Code with Pygame (Python) 

●​ 🎯 Doable, but you’ll write your own audio timing, input, collision, etc.​
 

●​ Good for learning, but not beginner-easy​
 

2. Web-based Rhythm Game 

●​ Use JavaScript + HTML5 Canvas​
 

●​ Libraries like Tone.js or Howler.js for audio timing​
 

●​ Not as beginner-friendly unless you’re already into web dev​
 

 

✅ Recommendation 
Start with Godot or Unity: 

●​ Godot is simpler for pure 2D, less setup.​
 

●​ Unity is more powerful, especially long-term.​
 

Once you’re more experienced, you can explore custom implementations. 

To run a 9-directional dance pad that connects to a PC via USB and also 
communicates with an LED driver, you’ll need a microcontroller (MCU) that supports: 

 

✅ Core Requirements: 

1.​ Enough GPIOs:​
 

○​ At least 9 digital inputs for the pad sensors.​
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○​ Additional digital outputs (or a serial interface) to control the LED driver.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​         

2.​ USB Device Capability:​
 

○​ Native USB HID or CDC support (for PC connection as a game controller 
or serial device).​
 

3.​ LED Driver Communication:​
 

○​ Either GPIOs (for basic on/off) or a protocol like SPI, I2C, or UART to 
communicate with an LED controller.​
 

4.​ Low Latency:​
 

○​ For responsive input and visual feedback.​
 

 

💡 Recommended MCU Options: 

🔷 Teensy 4.0 or 4.1 

●​ Pros:​
 

○​ Native USB support (appears as joystick, keyboard, or HID).​
 

○​ Powerful ARM Cortex-M7 @ 600 MHz (overkill but very low latency).​
 

○​ Tons of GPIOs and hardware serial, SPI, and I2C.​
 

○​ Great community support.​
 

●​ Cons:​
 

○​ Slightly more expensive than basic MCUs.​
 

●​ Best for: High-performance setups with RGB matrix or advanced lighting.​
 

🔷 STM32F103C8T6 (Blue Pill) 

●​ Pros:​
 

○​ Native USB support (with STM32duino or libusb).​
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○​ Multiple GPIOs, SPI/I2C/UART.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​         

○​ Very affordable.​
 

●​ Cons:​
 

○​ Trickier USB HID setup than Teensy.​
 

●​ Best for: DIY USB devices with moderate learning curve.​
 

🔷 Arduino Leonardo / Micro 

●​ Pros:​
 

○​ Native USB HID support (built-in joystick/keyboard emulation).​
 

○​ Simple to program.​
 

○​ Enough GPIOs.​
 

●​ Cons:​
 

○​ 8-bit AVR (slower than ARM).​
 

○​ Limited if you want more complex LED animations.​
 

●​ Best for: Simple, affordable dance pad setups.​
 

🔷 Raspberry Pi Pico 

●​ Pros:​
 

○​ RP2040 chip with dual-core.​
 

○​ USB HID support via CircuitPython or C++ SDK.​
 

○​ SPI/I2C/UART support.​
 

●​ Cons:​
 

○​ Somewhat more setup time to configure USB HID.​
 

●​ Best for: Balanced performance and cost, open source.​
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⚡ LED Driver Options 

If using individually addressable LEDs (e.g. WS2812, APA102): 

●​ Use NeoPixel or FastLED libraries.​
 

●​ These require timing-accurate GPIO (Teensy is great here).​
 

If using a basic LED panel (on/off for each pad): 

●​ Use GPIOs or an I2C/SPI GPIO expander (e.g. MCP23017, 74HC595).​
 

 

🎮 USB HID vs Serial 

●​ If you want it to act like a game controller, use USB HID Joystick profile 
(Teensy/Leonardo are ideal).​
 

●​ If you want it to send messages to a custom PC app, use USB Serial (CDC) 
and parse inputs.​
 

 

🔧 Final Recommendation 

If you want plug-and-play USB controller functionality, responsive LED control, and 
easy development: 

✅ Teensy 4.0 or Arduino Leonardo 

If you want more power and flexibility (with some DIY setup): 

✅ Raspberry Pi Pico or STM32F103 (Blue Pill) 

 

Let me know: 

●​ Do you want analog pressure sensitivity?​
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●​ What kind of LED panel or effects do you want?​
 

●​ Should it plug in and work like a controller right away?​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​         ix 

That will help narrow it down further. 

For arcade-grade and DIY dance pads, the most commonly used and effective panel 
sensor types are: 

 

🔹 1. Mechanical Switch-Based Sensors (Arcade Standard) 

🟢 Best for: Arcade-grade dance pads (like DDR, ITG) 

●​ Used in: Original DDR arcade pads (Konami), ITG pads, StepManiaX​
 

●​ How it works: Each panel is mounted over a set of mechanical switches 
(typically 4), and stepping on the panel compresses it to trigger the switches.​
 

●​ Pros:​
 

○​ Extremely durable under heavy use​
 

○​ High responsiveness and low latency​
 

○​ Precise actuation point (clear "on" and "off")​
 

●​ Cons:​
 

○​ Requires fine calibration and tuning​
 

○​ Panels can wear out or misalign over time if not maintained​
 

●​ Common switch: Omron V-10 or V-15 series​
 

 

🔹 2. Foil Contact Sensors 

🟡 Best for: DIY dance pads on a budget 

●​ Used in: Cobalt Flux-style DIY pads, older homemade builds​
 

162 



 

●​ How it works: Aluminum foil or copper tape layers make contact when stepped 
on, completing a circuit.​
 

●​ Pros:​
 

○​ Very inexpensive and easy to build​
 

○​ No need for expensive mechanical parts​
 

●​ Cons:​
 

○​ Less consistent triggering​
 

○​ Prone to wear, corrosion, or false positives​
 

○​ Not suitable for heavy or high-performance use​
 

 

🔹 3. Force-Sensitive Resistors (FSRs) 

🟡 Best for: Intermediate DIY pads 

●​ Used in: Some high-end DIY projects​
 

●​ How it works: Measures pressure applied to the sensor—more pressure = lower 
resistance.​
 

●​ Pros:​
 

○​ Analog input – allows pressure sensitivity​
 

○​ Flexible placement options​
 

●​ Cons:​
 

○​ More expensive than foil​
 

○​ May need analog-to-digital conversion (ADC) circuitry​
 

○​ Less tactile feel than switches​
 

 

🔹 4. Capacitive Touch or IR Proximity (Rare) 

163 



 

🔴 Not recommended for dance pads 

●​ Used in: Experimental or futuristic pads​
 

●​ Cons:​
 

○​ Not designed for physical stomping​
 

○​ Too sensitive or unreliable for high-intensity gameplay​
 

 

✅ Recommendation Summary 
Use Case Recommended 

Sensor 
Why 

Arcade-qualit
y 

Mechanical switches High durability, precision, matches arcade 
behavior 

DIY (budget) Foil contact sensors Cheap, easy to build, good for light/moderate 
use 

DIY 
(premium) 

FSRs or mechanical Smooth, analog response; mechanical for 
better feel 

 

Let me know your build goals (e.g. USB connectivity, LED response, number of panels, 
budget), and I can suggest a full sensor + controller setup for your pad. 

 

[24] Microsoft. (2025). copilot [AI assistant]. Microsoft Corporation.  

What would be the best way to create a rhythm game for a beginner? 
Would using a game engine be best or are there other alternatives to 
complete this objective? 

🎮 Great question, Andres! Creating a rhythm game can be a super fun way to 
dive into game development, especially if you’re into music and timing. Whether 
you want to build something simple like Tap Tap Revenge or more intricate like 
Friday Night Funkin', here’s how you could get started: 

🛠 Best Options for a Beginner 

1. Using a Game Engine (Highly Recommended!) 
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Game engines handle graphics, sound, input, and more — all the essentials for a 
rhythm game. 

●​ Unity (with C#) 
○​ One of the most popular engines for rhythm games. 
○​ Tons of community tutorials and asset store packages. 
○​ Great audio timing tools via AudioSource and Timeline. 

●​ Godot (with GDScript) 
●​ Lightweight and beginner-friendly. 
●​ Has a built-in animation player and audio support. 
●​ Open-source with lots of documentation. 

2. No-Code or Low-Code Tools 

If coding feels overwhelming, these tools let you focus more on design and logic. 

●​ Construct 3 or GDevelop 
●​ Drag-and-drop interfaces. 
●​ You can create rhythm-based actions with timers and animations. 
●​ Perfect for prototyping without writing code. 

3. Web-Based Tools 

Want to build something playable in a browser? 

●​ p5.js (JavaScript-based creative coding library) 
○​ Lets you sync visuals to audio beats. 
○​ Requires some coding, but great for creative freedom. 

●​ Scratch 
●​ Ultra beginner-friendly. 
●​ You can make simple rhythm games with sprite animations and sound 

blocks. 

🎵 Core Elements of a Rhythm Game 

Here’s what you’ll need to think about, regardless of the tool: 

●​ Beat detection or fixed timing system 
●​ Input controls (keyboard, touchscreen, etc.) 
●​ Visual cues (like notes or arrows) 
●​ Sound synchronization 
●​ Scoring system 

🚀 Kickstart Suggestions 

●​ Try recreating a tiny version of an existing rhythm game — like one level 
with simple visuals and sounds. 

●​ Use free music tracks or sound effects to experiment. 
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●​ Focus on getting the timing and feel right — rhythm games live and die by 
how satisfying the feedback is. 

If you tell me what kind of theme or vibe you’re thinking for the game, I can help 
brainstorm mechanics or even give you a starter outline to build from. Got a 
favorite rhythm game you’re trying to emulate? 

For a 9-directional dance pad that connects to a PC via USB and also controls an LED 
panel, you'd want a microcontroller unit (MCU) that supports: 

●​ ✅ USB HID (Human Interface Device) for PC input recognition 
●​ ✅ Enough GPIO pins for 9 directional inputs 
●​ ✅ Communication protocols like SPI or I2C to control an LED driver 
●​ ✅ Good community support and libraries for ease of development 

Here are some solid MCU options: 

🧠 Recommended MCUs 

MCU Model USB 
Support 

GPIO 
Pins 

LED Driver 
Communication 

Notes 

Arduino 
Leonardo 

Native USB 
HID 

~20 SPI/I2C Easy to use, great 
for beginners 

Teensy 4.0 Native USB 
HID 

~40 SPI/I2C Very fast, compact, 
and powerful 

Raspberry Pi 
Pico 

USB HID via 
TinyUSB 

~26 SPI/I2C Affordable and 
flexible with RP2040 
chip 

STM32F103 
("Blue Pill") 

USB HID via 
libraries 

~37 SPI/I2C More advanced, 
great performance 

🔌 LED Driver Compatibility 

If you're using something like the BCT3119 9-channel constant-current LED driver, 
which uses SPI for control, all the above MCUs can communicate with it via SPI. You’ll 
just need to ensure voltage compatibility (most are 3.3V or 5V). 

🕹️ Dance Pad Input 

Each directional pad switch can be wired to a digital input pin. Use internal pull-up 
resistors and debounce logic in software to ensure clean input signals. 

🖥️ PC Integration 
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For USB connection to the PC: 

●​ Arduino Leonardo and Teensy natively support USB HID, so they can emulate 
a keyboard or game controller. 

●​ Raspberry Pi Pico can use the TinyUSB library to emulate HID devices. 
●​ STM32 requires more setup but is highly customizable. 

Would you like help wiring the pad or writing the firmware logic for input and LED 
control? 

For arcade-grade and DIY dance pads, the type of panel sensor you choose is crucial 
for responsiveness, durability, and overall gameplay experience. Here's a breakdown of 
the best options: 

🥇 Top Sensor Types for Dance Pads 

1. Conductive Plate Sensors (Arcade Style) 

●​ Used in original DDR and Pump It Up arcade machines 
●​ Two metal plates separated by foam or spring material 
●​ Pressure from a footstep compresses the gap, completing the circuit 
●​ ✅ Highly responsive and durable 
●​ 🔧 Requires precise construction and materials 

2. FSR (Force Sensitive Resistor) Sensors 

●​ Detect pressure changes rather than direct contact 
●​ Often paired with microcontrollers like Arduino 
●​ ✅ Great for custom sensitivity tuning 
●​ ⚠️ May require calibration and software setup 
●​ FSR pad guide offers excellent DIY instructions 

3. Chinese Arcade Sensors (AliExpress) 

●​ Affordable and widely used in DIY builds 
●​ Typically black rubber sensors with JST connectors 
●​ ✅ Easy to install and replace 
●​ 💬 Highly recommended by DIY builders on Reddit and Instructables 

4. 3D Printed Spring Sensors 

●​ Innovative DIY option using flexible plastic as the spring 
●​ Copper tape used for conductivity 
●​ ✅ Customizable and cost-effective 
●​ ⚠️ Long-term durability depends on material choice (PLA vs. Nylon) 
●​ Detailed build guide available 

🛠️ Recommended for DIY Builders 
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●​ If you're aiming for arcade-like feel: Conductive plate sensors or Chinese 
arcade sensors 

●​ If you want customization and tech integration: FSR sensors 
●​ For a budget-friendly and creative build: 3D printed spring sensors 

Would you like help choosing materials or designing your own pad layout? I can walk 
you through a build plan or help source parts. 

 

[25] Gemini. (2025, July 6). [Response to a query about rhythm game development]  

What would be the best way to create a rhythm game for a beginner? 
Would using a game engine be best or are there other alternatives to 
complete this objective? 

For a beginner looking to create a rhythm game, using a game engine is 
generally the best and most recommended approach. While alternatives exist, 
game engines offer significant advantages in terms of ease of use, built-in 
features, and community support, which are crucial for someone starting out. 

Here's why game engines are ideal and what alternatives exist: 

Why Game Engines are Best for Beginners 
Game engines provide a framework and tools that simplify many complex 
aspects of game development, especially for rhythm games: 

●​ Audio Synchronization: Rhythm games are all about precise timing with 
music. Game engines have robust audio systems that make it much 
easier to load, play, and synchronize events with audio tracks. Many even 
offer tools for beat mapping or have plugins that help analyze audio to 
extract beat information. 

●​ Visuals and Animations: Creating the visual feedback for hits, note 
scrolling, and character animations is streamlined with an engine's visual 
editors and animation tools. 

●​ Input Handling: Game engines simplify capturing player input (key 
presses, taps, etc.) and checking them against timed events. 

●​ Physics (if needed): While less critical for core rhythm game mechanics, 
if you want any physical interactions (e.g., objects reacting to hits), the 
engine's physics engine will handle it. 

●​ UI Development: Most engines have intuitive UI systems for creating 
scores, combo meters, health bars, and menus. 

●​ Cross-Platform Deployment: If you eventually want your game on 
different platforms (PC, mobile, web), engines often have built-in tools for 
exporting to multiple targets. 
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●​ Community and Resources: Popular game engines have vast 
communities, tutorials, forums, and asset stores, which are invaluable for 
learning and troubleshooting. 

Recommended Game Engines for Rhythm Games (Beginner-Friendly) 

1.​ Godot Engine: 
○​ Pros: Free and open-source, lightweight, excellent for 2D games 

(which is common for rhythm games), has its own beginner-friendly 
scripting language (GDScript, similar to Python), and a growing 
community. 

○​ Considerations: While its audio features are good, you might need 
to dive a bit into scripting for advanced synchronization. 

2.​ Unity: 
○​ Pros: Extremely versatile, widely used, massive community and 

asset store, robust audio tools, and a good choice for both 2D and 
3D. 

○​ Considerations: Can be a bit more overwhelming at first due to its 
vastness, uses C# for scripting (which is a good language to learn, 
but might be a slightly steeper curve than GDScript for absolute 
beginners). 

3.​ GameMaker Studio 2: 
○​ Pros: Very beginner-friendly, especially if you prefer a visual 

scripting approach (though it also has its own scripting language, 
GML), excellent for 2D games, and a good option for quickly 
prototyping ideas. 

○​ Considerations: Less powerful for complex 3D games compared 
to Unity or Unreal. 

Key Considerations for Rhythm Game Development 
Regardless of the engine, here are some core concepts you'll need to grasp: 

●​ Beat Mapping/Charting: This is the process of defining when notes or 
actions should occur in relation to the music. You'll likely need a system 
(even a simple one) to "chart" your songs. 

●​ Synchronization: This is the most critical aspect. You need to ensure 
visual elements and input windows are perfectly aligned with the audio. 
Factors like audio latency need to be accounted for. 

●​ Input Window/Timing: Define the "perfect hit" window and "good hit" 
windows around each beat. 

●​ Visual Feedback: Players need clear visual cues for upcoming notes and 
immediate feedback for their actions (e.g., a glow on hit, a miss indicator). 

●​ Scoring and Combos: Implement a system to track player performance, 
scores, and combo streaks. 
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Alternatives to Game Engines 
While not recommended for a beginner building their first game, these 
alternatives exist: 

●​ Building from Scratch with Programming Languages and Libraries: 
○​ Description: This involves writing all the game logic, rendering, 

audio playback, and input handling yourself using a programming 
language (like Python with Pygame, JavaScript with a canvas 
library, or C++ with SDL/SFML). 

○​ Pros: Complete control over every aspect, deep learning 
experience in programming. 

○​ Cons: Significantly more complex and time-consuming for a 
beginner. You'd have to implement basic engine features yourself, 
which can be a huge hurdle. This is generally only recommended if 
your primary goal is to learn low-level game programming rather 
than making a game quickly. 

●​ No-Code/Low-Code Platforms (less common for rhythm games): 
○​ Description: Tools like Construct 3 or GDevelop allow you to 

create games with visual scripting and drag-and-drop interfaces, 
often without writing traditional code. 

○​ Pros: Extremely beginner-friendly, can create simple games very 
quickly. 

○​ Cons: May lack the fine-grained control and advanced audio 
synchronization capabilities needed for complex rhythm games. 
While you might be able to create a very basic "Simon Says" style 
rhythm game, something like Guitar Hero would be challenging. 

In summary, for a beginner, a game engine like Godot or Unity is by far the 
best way to start creating a rhythm game. They provide the necessary tools 
and support to focus on the unique challenges of rhythm game development 
without getting bogged down in low-level programming complexities. Start with a 
simple concept, maybe just a single note type and a short song, and build up 
from there. 

For a 9-directional dance pad with USB connectivity to a PC and LED panel control, 
you'll need an MCU that offers: 

1.​ USB HID (Human Interface Device) Emulation: This is crucial for the dance 
pad to be recognized by the PC as a gamepad or joystick without requiring 
custom drivers. 

2.​ Sufficient GPIO Pins: 
○​ For the 9-directional pads: Each pad will act as a digital input. You'll 

need at least 9 input pins, and potentially more if you use a matrix 
scanning approach to reduce pin count. 

○​ For LED Panel Control: The number of pins required depends on the 
type of LED panel. 
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■​ Addressable LEDs (e.g., WS2812B, NeoPixels): These are ideal 
as they only require one data pin for a whole string of LEDs, greatly 
simplifying wiring. You'd typically need one data pin per LED strip 
(e.g., if you have a strip per pad, you'd need 9 data pins). 

■​ Non-addressable LEDs (individual LEDs or common 
anode/cathode strips): These will require more GPIOs, possibly 
using shift registers (like the 74HC595) or dedicated LED driver ICs 
(like the TLC5940) to expand the output pins from the MCU. 

3.​ Processing Power (moderate): While a dance pad doesn't require immense 
processing power, the real-time input sensing and LED control will benefit from a 
decent clock speed. 

4.​ Memory: Enough memory for your firmware, including debouncing logic for the 
pad inputs and potentially LED animation patterns. 

Here are some strong MCU candidates, keeping in mind ease of use and community 
support: 

1. Arduino Leonardo / Arduino Micro / Adafruit ItsyBitsy M0/M4 (or similar 
SAMD21/SAMD51 boards): 

●​ Pros: 
○​ Native USB HID: These boards are excellent for emulating USB devices 

like keyboards or joysticks directly, which is perfect for a dance pad. The 
Arduino Leonardo is specifically cited in DIY dance pad projects for its HID 
capabilities. 

○​ Easy to program: Arduino IDE and its extensive libraries make 
programming very accessible. 

○​ Sufficient GPIOs: The Leonardo has 20 digital I/O pins, and boards like 
the ItsyBitsy M4 have even more (e.g., 25 digital GPIOs), which should be 
enough for 9 inputs and several LED control lines (especially with 
addressable LEDs or external drivers). 

○​ Good for LED control: Easily integrates with FastLED library for 
addressable LEDs. For non-addressable LEDs, you can use 
I2C/SPI-controlled LED drivers. 

●​ Cons: Might be slightly more expensive than some bare microcontrollers, but the 
development ease often outweighs this. 

2. ESP32 / ESP32-S3: 

●​ Pros: 
○​ Built-in Wi-Fi and Bluetooth: While not strictly necessary for your stated 

requirements, this opens up possibilities for wireless connectivity in the 
future, if desired (e.g., for data logging or remote control). 

○​ Plenty of GPIOs: ESP32 boards typically have a good number of GPIOs 
(around 30-40 depending on the specific module). 

○​ Fast processing: Dual-core processors in some ESP32 models provide 
ample power. 
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○​ USB-to-Serial converter built-in: Many ESP32 boards have a CP2102 
or similar chip, making uploading code easy. Some newer ESP32-S3 
boards even offer native USB for direct HID emulation, like the Arduino 
options. 

○​ Good for LED control: Excellent support for FastLED and other LED 
libraries. 

●​ Cons: Might have a slightly steeper learning curve than basic Arduino boards if 
you're completely new to microcontrollers, but the community is huge. 

3. Raspberry Pi Pico / Pico W: 

●​ Pros: 
○​ Low Cost: Very affordable. 
○​ RP2040 Microcontroller: Designed by Raspberry Pi, it's a powerful chip 

for its price point. 
○​ Programmable I/O (PIO): This is a unique feature that allows for highly 

precise and flexible control over I/O, which could be useful for advanced 
LED patterns or precise input timing. 

○​ USB MicroPython/CircuitPython/C++: Supports multiple programming 
environments, including CircuitPython which makes USB HID incredibly 
straightforward. 

○​ Good GPIO count: Sufficient pins for your needs. 
●​ Cons: While powerful, the ecosystem might feel a bit less mature for beginners 

compared to Arduino, though CircuitPython bridges this gap very well. 

Key Considerations for your project: 

●​ Input Method for the Dance Pad: 
○​ Individual Switches: Each of the 9 directions (and potentially a center 

button) can be a simple momentary switch. You'll need debouncing in your 
code to prevent multiple readings from a single press. 

○​ Matrix Scanning: If you want to reduce the number of GPIOs, you can 
arrange your switches in a matrix (rows and columns). The MCU would 
then scan the matrix to detect pressed buttons. This is more complex to 
implement in code but saves pins. Given 9 directions, individual switches 
are likely manageable. 

●​ LED Panel Control: 
○​ Addressable LEDs (WS2812B/NeoPixels): Highly recommended. You 

connect the data line of your LED strip to a single GPIO pin, and then you 
can control each LED's color and brightness individually with simple code. 
This is much simpler than wiring up individual LEDs or complex matrices. 

○​ Non-addressable LEDs with drivers/shift registers: If your LED panel 
uses standard non-addressable LEDs, you'll need external components 
like MOSFETs for power switching and potentially shift registers or 
dedicated LED driver ICs (e.g., TLC5940, MAX7219) to control many 
LEDs with fewer MCU pins. 
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●​ Power Supply: Consider the power requirements of your LED panel. If it's a 
large panel, it will likely need its own dedicated power supply, and you'll switch 
the power on/off through the MCU using a relay or MOSFET. 

Recommendation: 

For a good balance of ease of use, robust USB HID, and sufficient GPIOs for both input 
and LED control, an Arduino Leonardo or an Adafruit ItsyBitsy M0/M4 (or similar 
SAMD21/SAMD51 based board) would be excellent choices, especially if you plan to 
use addressable LEDs. They offer straightforward programming and great community 
support for HID emulation. If you want to experiment with wireless capabilities or a 
slightly more powerful platform for future expansion, the ESP32-S3 (with native USB) or 
Raspberry Pi Pico W are also strong contenders. 

For both arcade-grade dance pads and DIY dance pads, the best type of panel sensor 
often comes down to a balance of durability, sensitivity, and ease of 
implementation. 

Here's a breakdown of the most common and recommended sensor types: 

1. Force-Sensing Resistors (FSRs) 

Why they are often considered the best, especially for DIY and modern arcade 
pads: 

●​ Sensitivity and Precision: FSRs change their resistance based on the pressure 
applied, allowing for very precise and customizable sensitivity. This means you 
can finely tune how much force is needed to register a step. Modern pads like the 
StepManiaX Generations 4+ use FSRs. 

●​ Thin Profile: They are incredibly thin, making them easy to integrate into existing 
pad structures or incorporate into DIY builds without significantly altering the 
panel height or feel. 

●​ DIY Friendly: FSRs are relatively straightforward to wire up to microcontrollers 
like Arduino or Teensy boards. Many online guides and firmware options exist 
specifically for FSR-based dance pads. 

●​ Individual Sensor Thresholds: With FSRs, each sensor's sensitivity can be 
adjusted individually in software, which is great for personalizing the pad's 
response and reducing issues like double-triggering from vibrations. 

●​ Cost-Effective: While not as cheap as some rudimentary DIY methods, FSRs 
are generally affordable for the performance they offer. 

Considerations: 

●​ Durability (can vary): While robust, care is needed during installation to prevent 
bending or kinking, which can affect their lifespan. Proper mounting and 
protection are important. 
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●​ Non-linear Response: Their resistance change can be non-linear, which 
requires careful calibration in software to achieve consistent sensitivity across the 
pressure range. 

●​ Drifting: Some users report that FSRs can be prone to "drifting" over time, 
meaning their readings might subtly change, requiring occasional recalibration. 

2. Arcade Sensors (Rubber Contact Sensors with L-Brackets) 

The traditional choice for official arcade machines: 

●​ Durability: These sensors are designed to withstand years of heavy stomping in 
arcade environments. They typically involve a rubber strip with an air bladder and 
metal L-brackets that press down to complete a circuit. 

●​ Reliability: When properly maintained, they offer consistent and reliable input. 
●​ Authentic Feel: Many players prefer the distinct "feel" of genuine arcade 

sensors. 

Considerations: 

●​ Cost: Genuine arcade sensors can be quite expensive, especially if sourced 
new. Reproduction sensors are available and more affordable. 

●​ Complexity of Installation: Retrofitting them into a DIY pad can be more 
involved as they require specific channels and L-brackets for proper actuation. 

●​ Maintenance: They often require padding (tape, paper) under or above the 
L-bracket to adjust sensitivity and maintain responsiveness over time. 

3. Contact Sensors (DIY Metal Plates/Foil) 

A common and inexpensive DIY method: 

●​ Simplicity and Low Cost: This method involves two conductive surfaces (like 
aluminum foil or metal plates) separated by a compressible material (like foam or 
weather stripping). When pressed, they make contact and complete a circuit. 

●​ Easy to Understand: The concept is very basic, making it a popular starting 
point for DIYers. 

Considerations: 

●​ Durability: Aluminum foil can tear easily, and other materials may degrade over 
time, leading to inconsistent performance. 

●​ Sensitivity Issues: Achieving consistent and precise sensitivity can be 
challenging. "Penny modding" is a common technique to increase sensitivity in 
pads using this principle (like some LTEK pads). 

●​ Bounce/Double Triggers: The mechanical nature of contact sensors can 
sometimes lead to "bouncing" or double-triggering, where a single step registers 
multiple inputs. This often requires debouncing in software. 
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Less Common/Emerging Options: 

●​ Load Cells: These are highly accurate force sensors, often used in industrial 
applications. Some high-end DIY pads or custom builds might incorporate them 
for extremely precise pressure detection. However, they are generally thicker and 
require more complex electronics (amplifiers) to interface with microcontrollers. 

●​ Velostat: A pressure-sensitive conductive material that can be cut into sheets. 
Some early FSR pads used Velostat, but standard FSR modules are now more 
commonly preferred for consistency. 

●​ Capacitive Sensors: While explored for dance pads, they can be sensitive to 
environmental factors (like moisture) and shoe types, making them less ideal for 
consistent performance. 

Recommendation: 

For arcade-grade dance pads, modern designs are increasingly leaning towards FSRs 
due to their precise sensitivity, customizability, and relatively thin profile, while still 
offering excellent durability with proper implementation. The traditional arcade rubber 
contact sensors remain a strong, durable, and authentic choice if available and within 
budget. 

For DIY dance pads, Force-Sensing Resistors (FSRs) are generally the best choice. 
They offer an excellent balance of performance, ease of use with microcontrollers (like 
Arduino), and the ability to customize sensitivity to a high degree, allowing for a 
near-arcade quality experience without the higher cost or complexity of true arcade 
sensors. If you're on a very tight budget or just experimenting, simple contact sensors 
can be a starting point, but be prepared for potential durability and consistency issues. 

 

[26] DeepSeek (2024), [large language model developed by DeepSeek AI].  

Creating a rhythm game as a beginner is an exciting challenge! Using a game 
engine is overwhelmingly the best choice for a beginner. Here's why and how to 
approach it: 

Why a Game Engine is Best: 

Abstraction of Complexity: Engines handle graphics rendering, physics (if 
needed), input management, audio playback, and cross-platform deployment. 
You focus on your game logic. 

Built-in Tools: Visual editors, animation systems, asset managers, and debuggers 
significantly speed up development. 

Asset Pipelines: Easily import graphics, sounds, and music. 

175 



 

Community & Resources: Massive tutorials, documentation, forums, and asset 
stores specifically for game engines. Crucial for learning. 

 

Rapid Prototyping: Test core mechanics (like hitting notes to the beat) very 
quickly. 

Precision Timing: Engines provide high-resolution timers and frame-independent 
update loops, essential for rhythm game accuracy. 

Recommended Game Engines for Beginners (Rhythm Focus): 

Unity (C#): 

Pros: Largest community & tutorials, vast asset store, powerful & flexible, 
excellent 2D & 3D support, good performance. Many rhythm game tutorials exist. 

Cons: Can feel bloated for very small projects, newer input system has a learning 
curve. 

Why for Rhythm: Mature audio APIs (AudioSource, AudioClip), coroutines for 
timing, strong animation tools for note highways/effects. Great for both 2D and 
3D rhythm games. 

Godot (GDScript - Python-like, C#): 

Pros: Lightweight, fast, completely free & open-source, incredibly intuitive 
scene/node system, excellent 2D support, growing community. GDScript is easy 
to learn. 

Cons: Smaller community/resources than Unity (but growing fast), 3D is capable 
but less mature than Unity/Unreal, asset store smaller. 

Why for Rhythm: Built-in AudioStreamPlayer nodes, strong signal system for 
event handling (great for hit/miss events), Tween nodes for smooth animations. 
Very well-suited for 2D rhythm games. 

Unreal Engine (Blueprints Visual Scripting, C++): 

Pros: Stunning visuals "out of the box," powerful Blueprints visual scripting (great 
if you struggle with text code), best-in-class 3D. 

Cons: Steeper learning curve overall, larger download/overhead, C++ is complex 
for true beginners, potentially overkill for a simple 2D rhythm game. 

Why for Rhythm: Robust audio system, Blueprints can be used for core timing 
logic, great for ambitious 3D rhythm games (like VR). 
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Avoid (for a Beginner) / Use With Caution: 

Pure Programming Languages (Python/Pygame, JavaScript/HTML5 Canvas, 
C++/SDL, Java/LibGDX): 

Pros: Maximum control, deep learning, lightweight. 

Cons: You have to build everything from scratch: rendering shapes/sprites, 
playing sounds precisely, handling input, managing game states, timing. High risk 
of getting bogged down in low-level details before making game progress. Audio 
timing precision is notoriously tricky without engine help. 

When Consider? Only if you have significant programming experience already 
and specifically want the challenge of building the underlying systems. Not 
recommended for a first project. 

Best Approach for a Beginner Using an Engine: 

Choose Your Engine: Pick Unity (broadest resources) or Godot (simplicity, great 
2D) based on your preference. Download it. 

Start TINY: Your first goal is NOT "Guitar Hero Clone." Aim for: "A single button 
that I have to press when a moving dot hits a line, synchronized to a simple drum 
beat." 

Learn Engine Fundamentals: 

Follow the official "Getting Started" tutorials for your engine. 

Understand core concepts: Scenes/Objects, Components/Nodes, Transforms, 
Basic Scripting (C# for Unity, GDScript for Godot). 

Core Rhythm Prototype: 

Audio: Import a short, simple loop (e.g., a 4-beat drum pattern). Learn to play it. 

Note Spawning: Write code to spawn a visual object (a cube, circle) at a specific 
time before it needs to be hit. Hardcode the timing at first. 

Note Movement: Move the spawned object towards a "hit line" at a constant 
speed. Ensure its arrival time matches the beat time. 

Input Detection: Detect when the player presses the designated key (e.g., 
Spacebar). 

Judgment: When the key is pressed, check the distance of the note object to the 
hit line. 

Very close (e.g., within 50ms window): "Perfect!" (Destroy note, add score). 
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Close (e.g., 50-100ms): "Good!" 

Too early/late: "Miss!" (Destroy note, maybe show penalty). 

Feedback: Show text ("Perfect!"), play sounds, add particle effects on hit/miss. 

Refine & Expand: Once the core loop works: 

Level Design: Create a system (like a text file or simple array) to define note 
timings instead of hardcoding. 

Multiple Lanes/Buttons: Add more hit lines and map them to different keys (e.g., 
Left/Right Arrow, A/S/D keys). 

Better Graphics: Replace cubes with sprites, add a background. 

UI: Add a start screen, score display, combo counter. 

Music: Use a full song instead of a loop. Crucially, learn about audio offset 
calibration to sync your note timing perfectly with the track in the engine. 

Difficulty: Adjust note speed, timing window size, or note density. 

Crucial Rhythm Game Specifics: 

Precise Timing: Use the engine's high-resolution time (Time.time in Unity, 
OS.get_ticks_usec() in Godot) for judgment, not frame-based logic. Account for 
display latency if needed (less critical early on). 

Audio Analysis (Advanced): Initially, manually chart your note timings by listening 
to the song. Later, explore tools or libraries (like BASS, FMOD integration) for 
beat detection, but manual charting is standard for precise rhythm games. 

Input Lag: Be aware that monitors/TVs, audio devices, and peripherals add lag. 
Calibration settings in your game are essential later on. 

Alternatives ONLY if Engines Feel Too Heavy (Still Not Ideal): 

Specialized Frameworks: 

LÖVE (Lua): Simpler framework than raw OpenGL, but still requires building 
most systems. Lua is easy to learn. 

Phaser (JavaScript): Web-based framework. Good if you know JS and want a 
web game. Still requires more setup than an engine. 

Rhythm Game Creation Tools (Limited): Tools like "K-Shoot Mania Editor" or 
"StepMania/Etterna Editor" exist, but they are for creating charts for existing, 
specific rhythm game engines, not building your own unique game from scratch. 
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Conclusion: 

 

Start with a game engine (Unity or Godot are top recommendations for 
beginners). Focus relentlessly on building the tiniest possible playable rhythm 
prototype (one button, one note type, one beat). Learn the engine fundamentals 
through that process. Resist the urge to build your dream game immediately. 
Completing a tiny, functional prototype is infinitely more valuable and motivating 
than getting lost in the complexity of a "from-scratch" approach or an overly 
ambitious first design. Good luck! 

For a **9-directional dance pad** with **USB connectivity** to a PC and **LED control**, 
you'll need an **MCU** with the following features:   

- **USB HID** (for input as a game controller)   

- **GPIOs** for button matrix scanning (9 directions + optional extras)   

- **Hardware communication** (I²C, SPI, or UART) for an LED driver (e.g., WS2812B, 
PCA9685, or TLC5940)   

- **Sufficient processing power** for real-time input & LED updates   

 

### **Best MCU Options**   

 

#### **1. Raspberry Pi Pico (RP2040) – Best Budget & Flexible Choice**   

   - **Pros**:   

     - Cheap (~$4-$5)   

     - Dual-core Cortex-M0+ (good for multitasking)   

     - Built-in USB (can act as HID device)   

     - Many GPIOs (supports button matrix + LED driver)   

     - Easy CircuitPython/MicroPython/C++ support   

   - **Cons**:   

     - Requires manual USB HID setup (but libraries exist)   

   - **Best for**: DIY projects where cost matters   
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#### **2. Arduino Leonardo/Pro Micro (ATmega32U4) – Best Plug-and-Play USB HID**   

   - **Pros**:   

     - Native USB HID (recognized as a keyboard/joystick instantly)   

     - Works well with button matrices   

     - Can control LEDs via I²C/SPI (e.g., using FastLED for addressable LEDs)   

   - **Cons**:   

     - Limited RAM/Flash (but enough for this project)   

   - **Best for**: Quick USB game controller setup   

 

#### **3. ESP32-S3 (Native USB) – Best for Wireless + Advanced Features**   

   - **Pros**:   

     - Native USB (can act as HID)   

     - Wi-Fi/Bluetooth (if you want wireless options later)   

     - Fast, dual-core, plenty of GPIOs   

   - **Cons**:   

     - Slightly more expensive (~$10)   

   - **Best for**: Future-proofing (if you want wireless later)   

 

#### **4. STM32 Blue Pill (STM32F103) – Best for High Performance**   

   - **Pros**:   

     - Fast Cortex-M3, lots of peripherals   

     - Can do USB HID with some setup   

   - **Cons**:   

     - Requires more firmware work   
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   - **Best for**: Advanced users who need speed   

 

### **Recommended Setup**   

1. **MCU**: **Raspberry Pi Pico** (best balance of price & features)   

2. **Button Input**: 3x3 matrix (9 switches) + optional debouncing   

3. **LED Driver**:   

   - For addressable LEDs (WS2812B), use FastLED or NeoPixel libraries   

   - For PWM control (e.g., PCA9685), use I²C   

4. **USB**: Configure as HID joystick (CircuitPython/Arduino libraries available)   

 

### **Alternative Approach**   

If you want **plug-and-play USB**, an **Arduino Pro Micro (ATmega32U4)** is the 
easiest since it natively supports HID.   

 

Would you like a basic wiring diagram or code examples for any of these? 

For **arcade-grade dance pads** and high-quality **DIY dance pads**, the best sensor 
type is typically a **FSR (Force-Sensitive Resistor)** or a **conductive foam-based 
contact sensor**, depending on durability, sensitivity, and cost requirements. 

 

### **Best Sensor Types for Dance Pads:** 

1. **FSR (Force-Sensitive Resistor)** 

   - **Pros:**   

     - Highly sensitive to pressure (works with light to heavy steps).   

     - Durable (long lifespan, resistant to wear).   

     - Used in premium arcade pads (e.g., DDR official cabinets).   

   - **Cons:**   
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     - More expensive than other options.   

     - Requires proper wiring and conditioning circuits.   

 

2. **Conductive Foam + Metal Contacts (Arcade-Style)** 

   - **Pros:**   

     - Used in original arcade machines (e.g., DDR, PIU).   

     - Provides a tactile "click" feel when stepped on.   

     - Reliable and long-lasting when built correctly.   

   - **Cons:**   

     - Requires precise alignment and maintenance.   

     - Can wear out over time (foam compresses).   

 

3. **Velostat-Based Pressure Sensors (DIY-Friendly)** 

   - **Pros:**   

     - Cheap and easy to make at home.   

     - Works by pressure changing resistance.   

   - **Cons:**   

     - Less consistent than FSRs.   

     - Wears out faster.   

 

4. **Mechanical Microswitches (Less Common)** 

   - **Pros:**   

     - Tactile feedback (clicky response).   

     - Durable if high-quality switches are used.   

   - **Cons:**   
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     - Requires significant force to activate.   

     - Can feel stiff compared to arcade pads.   

 

### **Best Choice?** 

- **For arcade-grade pads:** **FSR** or **conductive foam + metal contacts** (most 
authentic).   

- **For DIY builds on a budget:** **Velostat-based sensors** or **soft potentiometers**.   

- **For a balance of cost and quality:** **FSRs** (best for serious players).   

 

Would you like recommendations for specific wiring setups or suppliers for these 
sensors? 

 

How can we implement computer vision into a dance rhythm game using a 
camera? 

ChatGPT said: 

Implementing computer vision in a dance rhythm game using a camera involves 
tracking and interpreting the player's body movements to determine whether they match 
specific dance poses or actions required by the game. Here’s a structured overview on 
how to implement this: 

 

🎯 Goal 

Use a camera to track player movements and compare them to expected dance 
moves in sync with rhythm/music. 

 

🧱 Core Components 

1. Camera Input 

●​ Use a webcam or phone camera to capture real-time video of the player.​
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2. Pose Estimation 

●​ Use a pose estimation model to detect body landmarks (key points like joints).​
 

○​ Popular libraries:​
 

■​ MediaPipe Pose​
 

■​ OpenPose​
 

■​ MoveNet​
 

●​ Output: 2D or 3D coordinates of body joints (e.g., wrists, elbows, knees, etc.).​
 

3. Dance Move Definition 

●​ Define expected poses or movements at specific timestamps (like "Step left" at 
beat 3).​
 

○​ Use:​
 

■​ Pre-defined skeleton positions (keypoint sets).​
 

■​ Motion sequences.​
 

■​ Tolerance thresholds for accuracy.​
 

4. Real-Time Matching 

●​ Compare the player’s live pose with the target pose:​
 

○​ Compute a similarity score (e.g., cosine similarity or Euclidean distance 
between keypoints).​
 

○​ Use Dynamic Time Warping (DTW) or optical flow for matching sequences 
over time.​
 

5. Scoring System 

●​ Assign points based on:​
 

○​ Pose accuracy.​
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○​ Timing (sync with beat).​
 

○​ Smoothness of motion.​
 

6. Rhythm Synchronization 

●​ Sync music/audio cues with target moves using beat detection or predefined 
timestamps.​
 

7. User Feedback 

●​ Provide real-time visual or audio feedback like:​
 

○​ "Perfect", "Good", "Miss"​
 

○​ On-screen skeleton overlay for correction.​
 

 

🧪 Technologies & Tools 

Task Tool/Library 

Camera capture OpenCV, MediaPipe 

Pose estimation MediaPipe, OpenPose, MoveNet 

Real-time feedback Pygame, Unity + Python bridge, Flutter with platform 
channels 

ML backend  

(if needed) 

TensorFlow / PyTorch 
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Music sync pydub, librosa, Unity Audio Engine 

 

🧠 Example Architecture (Python) 

python 

Copy code 

import cv2 

import mediapipe as mp 

 

mp_pose = mp.solutions.pose 

pose = mp_pose.Pose() 

 

cap = cv2.VideoCapture(0) 

 

while cap.isOpened(): 

    success, frame = cap.read() 

    if not success: 

        break 

     

    # Convert the image to RGB 

    image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

    results = pose.process(image) 
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    # Draw landmarks 

    if results.pose_landmarks: 

        mp.solutions.drawing_utils.draw_landmarks( 

            frame, results.pose_landmarks, 
mp_pose.POSE_CONNECTIONS 

        ) 

 

    cv2.imshow('Dance Pose Tracker', frame) 

    if cv2.waitKey(5) & 0xFF == 27: 

        break 

 

cap.release() 

 

 

🕹 Game Flow Example 

1.​ Load song and predefined move chart.​
 

2.​ Start camera and detect player pose.​
 

3.​ At each beat window:​
 

○​ Compare player’s pose to expected pose.​
 

○​ If match within threshold, give score.​
 

4.​ Update visuals and feedback.​
 

 

⚠️ Challenges 
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●​ Latency: Ensure low-lag pose detection.​
 

●​ Lighting conditions: Poor lighting can reduce accuracy.​
 

●​ Occlusion: Some body parts may be hidden.​
 

●​ User positioning: Require calibration/setup step to ensure full body is visible.​
 

 

🔄 Optional Enhancements 

●​ Use a mobile device as a camera (streaming to desktop game).​
 

●​ Allow custom choreography creation.​
 

●​ Use AI dance feedback (“lift arm higher”, “face forward”).​
 

●​ Add multiplayer mode (track multiple people via pose ID).​
 

 

Let me know your development environment (e.g., Unity, Python, Flutter), and I can 
tailor the code or tools accordingly! 

 

How can we implement computer vision into a dance rhythm game using a camera? 

Implementing computer vision into a dance rhythm game using a camera involves 
several key steps to track a player's movements and compare them against target 
dance moves. Here's a breakdown of how it can be achieved: 

1. Real-time Pose Estimation: 

●​ The Core Technology: The most crucial aspect is real-time human pose 
estimation. This involves identifying and tracking key points (landmarks) on a 
person's body (e.g., head, shoulders, elbows, wrists, hips, knees, ankles) from a 
live camera feed. 

●​ Libraries and Frameworks: Several open-source computer vision libraries are 
excellent for this: 

○​ MediaPipe Pose: Developed by Google, MediaPipe offers a robust and 
efficient solution for real-time pose estimation. It can track up to 33 2D or 
3D landmarks on the human body. It's well-suited for interactive 
applications due to its performance. 
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○​ OpenPose: Another popular and powerful library for multi-person 2D pose 
estimation. While it might be more resource-intensive, it offers high 
accuracy. 

○​ YOLO (You Only Look Once) with Pose Estimation: YOLO is primarily 
an object detection model, but variations exist that incorporate pose 
estimation capabilities. You might need to train or fine-tune a model for 
optimal dance-specific pose detection. 

●​ How it works: These libraries use deep learning models to analyze each frame 
of the video feed, locate the human body, and then identify the precise 
coordinates of the key points. 

2. Data Acquisition and Processing: 

●​ Camera Input: The game will need to capture video frames from a standard 
webcam or a more advanced depth camera (like a Kinect, although newer, 
software-based solutions are often sufficient). 

●​ Frame-by-Frame Processing: Each frame from the camera needs to be fed into 
the pose estimation model. 

●​ Keypoint Extraction: The output of the pose estimation will be a set of 
coordinates for each detected body landmark. These coordinates will be the raw 
data representing the player's pose at that moment. 

3. Reference Dance Data: 

●​ Pre-recorded Choreography: You'll need reference data for each dance move 
or sequence. This can be obtained by: 

○​ Motion Capture: Using professional motion capture suits to record a 
dancer's movements with high precision. This is ideal for accuracy but can 
be expensive. 

○​ Video Analysis: Recording a skilled dancer performing the moves and 
then using the same pose estimation techniques to extract their keypoint 
data. This is a more accessible and common approach for rhythm games. 

○​ Manual Annotation: While time-consuming, you could manually annotate 
key points in reference video frames, though this is generally less practical 
for entire dance routines. 

●​ Data Representation: The reference dance data should be stored in a similar 
format to the player's real-time keypoint data (e.g., a sequence of keypoint 
coordinates over time). 

4. Comparing Player Movement to Reference: 

●​ Pose Matching/Similarity: This is the core logic for scoring. You need 
algorithms to compare the player's current pose (from the live camera feed) to 
the corresponding reference pose at that moment in the song. 

●​ Techniques for Comparison: 
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○​ Euclidean Distance: Calculate the distance between corresponding key 
points of the player and the reference. Smaller distances indicate a better 
match. 

○​ Cosine Similarity: Measure the cosine of the angle between vectors 
formed by body segments (e.g., upper arm, forearm, thigh, shin). This 
helps with pose orientation. 

○​ Dynamic Time Warping (DTW): For comparing entire sequences of 
movements, DTW can be invaluable. It allows for variations in timing and 
speed, finding the optimal alignment between the player's movement 
sequence and the reference sequence. This is particularly useful for 
evaluating fluidity and rhythm over a longer period. 

○​ Machine Learning/Deep Learning: For more complex evaluations and 
style recognition, you could train a machine learning model to classify 
poses or evaluate the "correctness" of a move based on a dataset of good 
and bad performances. 

●​ Scoring Mechanism: Based on the similarity metrics, you'll assign a score to the 
player for each pose or sequence of poses. This score can contribute to the 
overall game score. 

5. Game Logic and Feedback: 

●​ Rhythm Synchronization: The game needs to know when each specific dance 
move is expected to occur in sync with the music. This requires precise timing. 

●​ Visual Feedback: 
○​ Overlaying Skeletons: Displaying an overlay of the detected skeleton on 

the player's live feed can provide immediate visual feedback. 
○​ Color-coding: Highlighting body parts that are correctly or incorrectly 

positioned. 
○​ On-screen Prompts: Showing visual cues for upcoming moves. 

●​ Auditory Feedback: Sound effects for successful moves or missed cues. 
●​ Scoring Display: Real-time display of the player's score. 

6. Development Considerations: 

●​ Performance Optimization: Real-time computer vision can be computationally 
intensive. You'll need to optimize your code to ensure smooth gameplay, 
especially for lower-spec hardware. This might involve: 

○​ Frame Rate Management: Processing frames at a consistent rate. 
○​ Hardware Acceleration: Utilizing GPUs for faster processing (e.g., with 

CUDA or OpenCL). 
○​ Model Size and Efficiency: Choosing pose estimation models that are 

optimized for speed. 
●​ Lighting Conditions: The accuracy of pose estimation can be affected by 

lighting. Ensure the game's environment is well-lit for optimal performance. 
●​ Occlusion Handling: What happens if a player's hand is hidden behind their 

body? Advanced pose estimation models can sometimes infer occluded joints, 
but it's a challenge to consider. 
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●​ Calibration: You might need a calibration step where the player stands in a 
neutral pose to help the system understand their proportions and position relative 
to the camera. 

●​ User Experience (UX): Make the interface intuitive and the feedback clear. 

Example Implementation Flow (Python with MediaPipe and OpenCV): 

1.​ Install Libraries: pip install opencv-python mediapipe 
2.​ Initialize Camera: cap = cv2.VideoCapture(0) 
3.​ Load MediaPipe Pose Model: mp_pose = mp.solutions.pose 
4.​ Game Loop: 

○​ Read frame from camera: ret, frame = cap.read() 
○​ Preprocess frame (e.g., convert BGR to RGB): frame_rgb = 

cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
○​ Perform pose estimation: results = pose.process(frame_rgb) 
○​ Extract keypoints: if results.pose_landmarks: access 

results.pose_landmarks.landmark 
○​ Compare to reference data (e.g., load a pre-recorded sequence of 

landmarks for the current dance step). 
○​ Calculate score based on pose similarity. 
○​ Render feedback (e.g., draw landmarks on the frame, display score). 
○​ Display frame: cv2.imshow('Dance Game', frame) 
○​ Check for exit key. 

5.​ Release Resources: cap.release(), cv2.destroyAllWindows() 

By combining powerful pose estimation techniques with careful game design, you can 
create an engaging and immersive dance rhythm game controlled entirely by a camera. 

 

 

How can we implement computer vision into a dance rhythm game using a camera? 

🕺💻 Using computer vision in a dance rhythm game opens up some exciting 
gameplay possibilities, especially for hands-free interaction and body-based 
rhythm tracking. Here’s how you can thoughtfully implement it using a camera 
system: 

🧠 Core Concept 

Use a camera to track players' body movements in real time, compare them 
against target poses or dance patterns, and score their performance based on 
accuracy and timing. 

🔧 Key Components to Implement 
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1. Pose Estimation 

●​ Use models like OpenPose, MediaPipe, or PoseNet to detect and track body 
joints. 

●​ These models process video frames and give you a real-time skeleton map 
(coordinates of key points like wrists, knees, etc). 

2. Rhythm & Timing Detection 

●​ Synchronize detected body movement events (e.g. arm raises, foot taps) 
with beat timestamps from the music track. 

●​ Introduce a timing window—similar to traditional rhythm games—where 
player actions are only rewarded if they occur within the beat's “perfect” 
zone. 

3. Action Mapping & Scoring 

●​ Define expected poses or movement sequences per beat. 
●​ Compare detected poses to predefined templates using similarity scores 

(e.g. cosine similarity between joint vectors). 
●​ Implement a scoring system based on timing, accuracy, and difficulty. 

4. Feedback & Visuals 

●​ Provide real-time visual overlays showing detected joints and scoring 
feedback. 

●​ Use skeletal animations or shadow avatars to guide players. 

5. Calibration & Accessibility 

●​ Include a calibration step to accommodate different heights, body types, 
and camera setups. 

●​ Offer multiple difficulty levels and visual guides for different accessibility 
needs. 

🧪 Prototyping Tools You Might Like 

Tool Use Case Why It Works Well 

MediaPipe Fast pose detection Lightweight & cross-platform 
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Unity + 
Barracuda 

Game dev + ML model 
integration 

Familiar workflow, compatible 
with C# 

OpenCV Image processing & camera 
control 

Open-source, powerful CV 
toolkit 

Godot + 
GDNative 

Lightweight integration Great for prototyping with 
Godot 

🎮 Gameplay Ideas with Computer Vision 

●​ Mirror Match Mode: Players mimic poses of an on-screen dancer to the 
beat. 

●​ Gesture-to-Rhythm: Players trigger effects or score by hitting key poses 
rhythmically. 

●​ Freestyle Mode: AI evaluates style and flow, scores based on creativity + 
alignment to beat. 

If you’re thinking of using this in a beginner-friendly engine like Godot, I can help 
sketch out how to plug in MediaPipe or OpenCV through GDNative or custom 
modules. Want to go deeper on tech setup or gameplay design next? 

 

Rhythm synchronization in a Godot project can be implemented in several ways, 
depending on the complexity and purpose (e.g. syncing gameplay events to 
music beats, rhythm-based input timing, etc.). Below is a general approach to 
implement rhythm synchronization in Godot (GDScript): 

 

🎵 Step-by-Step: Basic Beat Synchronization System in Godot 

 

1. Choose or Load a Music Track 

Load the music using an AudioStreamPlayer node. 

gdscript 

CopyEdit 
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# MusicPlayer.gd 

extends AudioStreamPlayer 

 

func _ready(): 

    play()  # Start music 

 

 

2. Determine BPM (Beats Per Minute) 

You need to know the BPM of your music track. For example, if it's 120 BPM: 

gdscript 

CopyEdit 

const BPM = 120 

const BEAT_INTERVAL = 60.0 / BPM  # Seconds per beat 

 

 

3. Create a Beat Timer 

Use a timer to track beats in sync with the song. 

gdscript 

CopyEdit 

extends Node 

 

const BPM = 120 

const BEAT_INTERVAL = 60.0 / BPM 
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var beat_timer := 0.0 

var current_beat := 0 

 

onready var music_player := $AudioStreamPlayer 

 

func _ready(): 

    music_player.play() 

 

func _process(delta): 

    beat_timer += delta 

    if beat_timer >= BEAT_INTERVAL: 

        beat_timer -= BEAT_INTERVAL 

        current_beat += 1 

        _on_beat() 

 

 

4. Define the _on_beat() Callback 

Trigger anything that should happen on the beat. 

gdscript 

CopyEdit 

func _on_beat(): 

    print("Beat:", current_beat) 

    # Call animations, spawn enemies, change colors, etc. 
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5. (Optional) Improve Accuracy with AudioServer Time 

Godot’s AudioServer.get_time_since_playback_start() provides more 
precise timing: 

gdscript 

CopyEdit 

var last_beat_time := 0.0 

 

func _process(_delta): 

    var song_time = AudioServer.get_time_since_playback_start() 

    var beat_number = int(song_time / BEAT_INTERVAL) 

    if beat_number != current_beat: 

        current_beat = beat_number 

        _on_beat() 

 

 

6. Handling Player Input Timing (For Rhythm Games) 

To check if a player's input is on-beat, you can calculate the distance to the 
nearest beat: 

gdscript 

CopyEdit 

func is_input_on_beat(input_time: float, tolerance: float = 
0.15) -> bool: 

    var beat_number = round(input_time / BEAT_INTERVAL) 

    var beat_time = beat_number * BEAT_INTERVAL 
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    return abs(input_time - beat_time) <= tolerance 

 

Then when input is detected: 

gdscript 

CopyEdit 

func _input(event): 

    if event.is_action_pressed("hit_note"): 

        var current_time = 
AudioServer.get_time_since_playback_start() 

        if is_input_on_beat(current_time): 

            print("Good timing!") 

        else: 

            print("Miss!") 

 

 

🧰 Bonus Tips 

●​ Use a .beatmap or JSON file if you want more complex rhythm patterns 
synced with music.​
 

●​ Use Godot’s AudioEffectSpectrumAnalyzer for real-time beat detection 
(advanced).​
 

●​ If working in Godot 4, AudioStreamPlayback and PlaybackPosition 
APIs offer improved control.​
 

●​ Always account for latency—especially on mobile or HTML5 builds.​
 

 

Would you like a downloadable rhythm-based mini-game example or help 
integrating this into your existing project? 

197 



 

Implementing rhythm synchronization in a Godot project, especially for rhythm 
games, requires precise timing and careful consideration of audio latency. Here's 
a breakdown of the key concepts and methods you can use: 

Core Concepts for Rhythm Synchronization 
1.​ Audio Playback Position: The most crucial element is accurately knowing 

the current playback position of your music. Godot's AudioStreamPlayer 
nodes are central to this. 

2.​ Latency Compensation: All audio playback has a small, unavoidable delay 
(latency) between when a play() function is called and when the sound is 
actually heard. This needs to be factored in for precise synchronization. 

3.​ BPM (Beats Per Minute) and Time Signature: Understanding the music's 
tempo and structure is essential for calculating when events should occur. 

4.​ Event Scheduling: Instead of relying on _process() or 
_physics_process() directly for rhythm events (which can be 
inconsistent due to varying frame rates), you should schedule events 
based on the audio's timeline. 

5.​ "Conductor" System: A common and effective approach is to create a 
"conductor" script or node that manages the music's state, calculates beat 
timings, and emits signals for other game elements to react to. 

Implementation Strategies in Godot 

1. Using AudioStreamPlayer.get_playback_position() and Latency 
Compensation 

This is the fundamental approach recommended by Godot's official 
documentation. 

●​ Get Current Time: You can get the current playback position of an 
AudioStreamPlayer using 
audio_stream_player.get_playback_position(). 

●​ Improve Precision with AudioServer: For even more precision, especially 
important in rhythm games, combine get_playback_position() with 
AudioServer.get_time_since_last_mix() to get a more real-time 
position. 

Compensate for Output Latency: Crucially, subtract the 
AudioServer.get_output_latency() from your calculated time. This accounts 
for the delay between the audio being mixed by the engine and it actually being 
heard by the player.​
GDScript​
func _process(delta): 
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    var current_music_time = $AudioStreamPlayer.get_playback_position() + 
AudioServer.get_time_since_last_mix() - AudioServer.get_output_latency() 

    # Now use 'current_music_time' to trigger your rhythm events 

●​  
●​ Initial Playback Delay: When you call play() on an AudioStreamPlayer, 

the sound doesn't start immediately. You can estimate this initial delay by 
adding AudioServer.get_time_to_next_mix() and 
AudioServer.get_output_latency(). This is useful for timing the start 
of your game logic with the start of the music. 

2. Building a "Conductor" Node 

Many rhythm game tutorials advocate for a dedicated "Conductor" node. This 
node is responsible for: 

●​ Storing Music Data: BPM, time signature, and potentially a "chart" of 
upcoming events (notes, enemy spawns, etc.) with their corresponding 
beat/time. 

●​ Calculating Beat Times: Based on the BPM, the conductor calculates the 
precise time (in seconds) for each beat, measure, or any other rhythmic 
subdivision. 

●​ Emitting Signals: As the current_music_time (calculated with latency 
compensation) passes a scheduled event's time, the conductor emits a 
signal. Other game objects (e.g., note spawners, animations, UI elements) 
can then connect to these signals and react accordingly. 

Example Conductor Node Structure (GDScript): 

GDScript 

extends Node 

 

@export var bpm: float = 120.0 

@export var audio_stream_player: AudioStreamPlayer 

@export var initial_offset: float = 0.0 # Time in seconds before the first beat 

 

signal beat_triggered(beat_number) 

signal measure_triggered(measure_number) 
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signal custom_event_triggered(event_id) 

 

var _current_beat: int = -1 

var _current_measure: int = -1 

var _beat_interval: float 

var _start_time: float = 0.0 

 

func _ready(): 

    _beat_interval = 60.0 / bpm 

    if audio_stream_player: 

        audio_stream_player.play() 

        # Account for initial audio playback delay 

        _start_time = Time.get_ticks_usec() / 1_000_000.0 + 
AudioServer.get_time_to_next_mix() + AudioServer.get_output_latency() 

    else: 

        # If no AudioStreamPlayer, just start counting immediately (useful for 
debugging or non-audio sync) 

        _start_time = Time.get_ticks_usec() / 1_000_000.0 

 

func _process(delta): 

    var elapsed_time = (Time.get_ticks_usec() / 1_000_000.0) - _start_time - 
AudioServer.get_output_latency() 

 

    # If using an AudioStreamPlayer, ensure we're getting the most accurate time 

    if audio_stream_player and audio_stream_player.is_playing(): 

        elapsed_time = audio_stream_player.get_playback_position() + 
AudioServer.get_time_since_last_mix() - AudioServer.get_output_latency() 
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    var target_beat = floor((elapsed_time - initial_offset) / _beat_interval) 

 

    if target_beat > _current_beat: 

        _current_beat = target_beat 

        emit_signal("beat_triggered", _current_beat) 

        # You can also emit measure_triggered here if you track time signature 

        # For example, if 4 beats per measure: 

        # var target_measure = floor(_current_beat / 4.0) 

        # if target_measure > _current_measure: 

        #     _current_measure = target_measure 

        #     emit_signal("measure_triggered", _current_measure) 

 

    # Example of triggering custom events from a pre-defined chart 

    # This would involve loading an array of dictionaries or custom resources 

    # for your song's events: 

    # for event in song_chart: 

    #     if elapsed_time >= event.time_to_trigger and not event.triggered: 

    #         emit_signal("custom_event_triggered", event.id) 

    #         event.triggered = true # Mark as triggered to avoid multiple emissions 

 

3. Using the RhythmNotifier Addon 

Godot's Asset Library offers the RhythmNotifier addon (Godot 4). This addon 
provides a RhythmNotifier class that simplifies beat synchronization. 
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●​ Features: It emits rhythmic signals synchronized with an 
AudioStreamPlayer, accounting for output latency. You can define 
custom signals to emit on specific beats or repeatedly. 

●​ Usage: 
1.​ Install RhythmNotifier from the Godot Asset Library. 
2.​ Add a RhythmNotifier node to your scene. 
3.​ Set its BPM property. 
4.​ Optionally, drag your AudioStreamPlayer node onto its Audio 

Stream Player property. 
5.​ Use its beats() method to create and connect to signals. 

GDScript​
# Example using RhythmNotifier (from its documentation) 

@onready var rhythm_notifier: RhythmNotifier = $RhythmNotifier 

 

func _ready(): 

    rhythm_notifier.bpm = 120.0 

    rhythm_notifier.audio_stream_player = $MyAudioPlayer # Assign your 
AudioStreamPlayer 

    rhythm_notifier.beats(1).connect(on_beat) # Emit signal every beat 

    rhythm_notifier.beats(4, false, 3).connect(on_specific_beat) # Emit on beat 3 
(once) 

    $MyAudioPlayer.play() 

 

func on_beat(beat_count: int): 

    print("Beat! Current beat: ", beat_count) 

    # Trigger visual effects, spawn notes, etc. 

 

func on_specific_beat(_beat_data): 

    print("Specific beat reached!") 

●​  
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This addon can significantly reduce the boilerplate code needed for rhythm 
synchronization. 

4. Charting System (for complex rhythm games) 

For games like Guitar Hero or Friday Night Funkin', you'll need a robust charting 
system: 

●​ External Data: Instead of hardcoding events, define your song's events 
(note timings, enemy spawns, etc.) in an external format (JSON, CSV, 
custom text file). 

●​ Loading Charts: Your game loads this chart data at runtime. 
●​ Event Queue: As the music plays, the conductor (or a dedicated chart 

reader) checks the chart for upcoming events based on the current music 
time and triggers them. 

●​ Editor: For complex games, you might even build a simple in-game or 
external editor to create these charts visually, aligning events with the 
music. 

Key Considerations for Precision 
●​ Audio File Format: Use uncompressed formats like WAV for rhythm-critical 

audio to minimize decoding overhead and potential delays. 
●​ Project Settings (Audio Latency): In Godot's Project Settings, under Audio 

-> Driver -> Output Latency, you can try reducing the default value 
(e.g., from 15ms to 5ms) to minimize audible delay. Be aware that lower 
latency can increase CPU usage and potentially lead to audio crackling if 
your system struggles. 

●​ _process vs. _physics_process: For rhythm game logic, it's generally 
better to base your timing on _process (which runs every frame) or the 
audio thread's actual position rather than _physics_process (which has a 
fixed tick rate, potentially leading to less granular timing). 

●​ User Calibration: For the best player experience, consider implementing an 
in-game calibration system where players can adjust a global offset to 
compensate for their specific audio setup and their own reaction time. This 
allows them to fine-tune the synchronization to feel perfect. 

●​ Visual and Audio Cues: Ensure your visual cues (notes appearing, hit 
animations) and audio cues (hit sounds, music changes) are tightly 
synchronized. A slight visual offset can be tolerated more than an audible 
one. 

By combining these strategies and paying close attention to Godot's audio timing 
features, you can successfully implement robust rhythm synchronization in your 
projects. 
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To implement computer vision in a dance rhythm game using a camera, follow this 
structured approach: 
 
1. Pose Detection 
Technology: Use MediaPipe Pose or OpenPose for real-time body landmark detection. 
 
Keypoints: Track critical joints (wrists, elbows, shoulders, hips, knees, ankles). 
 
Output: 2D/3D coordinates of body joints from each camera frame. 
 
2. Move Definition & Tracking 
Predefined Moves: Create a library of dance moves (e.g., arm raises, squats, spins) 
with expected joint positions/angles. 
 
Tracking Logic: 
 
Calculate joint angles (e.g., elbow angle via vectors between shoulder-elbow-wrist). 
 
Measure limb positions relative to the body (e.g., "left hand above head"). 
 
Detect motion vectors (e.g., rapid upward leg movement for a kick). 
 
3. Rhythm Synchronization 
Beat Mapping: Design beat maps (like DDR step charts) with: 
 
Timestamps: When moves should be performed. 
 
Move IDs: Expected move for each beat. 
 
Timing Windows: Define hit windows (e.g., ±250ms around the beat) for scoring. 
 
4. Move Validation & Scoring 
Similarity Check: Compare player's pose with the expected move using: 
 
Cosine similarity for joint angles. 
 
Euclidean distance for keypoint positions. 
 
Scoring: 
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Perfect/Good/Miss based on timing and pose accuracy. 
 
Combo multipliers for consecutive hits. 
 
5. Game Interface 
Feedback Overlays: 
 
Display the next move (e.g., arrow directions, limb icons). 
 
Show real-time pose with skeleton overlays. 
 
Highlight scoring (e.g., "PERFECT!") and combo counters. 
 
Camera Feed: Show player’s video with augmented graphics. 
 
6. Technical Implementation 
Tools: 
 
Python with OpenCV (camera handling). 
 
MediaPipe (pose estimation). 
 
PyGame or Unity (game UI/rendering). 
 
LibROSA (audio beat tracking). 
 
Workflow: 
 
Capture camera frames. 
 
Run pose estimation per frame. 
 
For each beat in the map: 
 
Check if current time is within the beat’s hit window. 
 
Validate pose similarity to the expected move. 
 
Update score and feedback. 
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Render UI with camera feed, move prompts, and score. 
 
7. Optimization Tips 
Robustness: 
 
Use filtering (e.g., Kalman filter) to smooth jittery joint data. 
 
Handle occlusions via interpolation or historical data. 
 
Calibration: Normalize poses to the player’s height/arm span at the start. 
 
Performance: Reduce input lag by optimizing pose estimation (e.g., lower-resolution 
processing). 
 
Example Code Snippet (MediaPipe + PyGame) 
python 
import cv2 
import pygame 
import mediapipe as mp 
 
# Initialize MediaPipe Pose 
mp_pose = mp.solutions.pose 
pose = mp_pose.Pose() 
 
# PyGame setup 
pygame.init() 
screen = pygame.display.set_mode((800, 600)) 
 
# Beat map example: [(time_ms, expected_move)] 
beat_map = [(1000, "ARM_UP"), (2000, "SQUAT")] 
 
def check_move(expected, landmarks): 
    if expected == "ARM_UP": 
        # Check if wrists are above shoulders 
        left_wrist = landmarks[mp_pose.PoseLandmark.LEFT_WRIST] 
        left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER] 
        return left_wrist.y < left_shoulder.y 
    elif expected == "SQUAT": 
        # Check if hips are below knees 
        left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP] 
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        left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE] 
        return left_hip.y > left_knee.y 
    return False 
 
cap = cv2.VideoCapture(0) 
clock = pygame.time.Clock() 
start_time = pygame.time.get_ticks() 
 
while True: 
    # Process camera frame 
    ret, frame = cap.read() 
    rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
    results = pose.process(rgb_frame) 
 
    # Get current time 
    current_time = pygame.time.get_ticks() - start_time 
 
    # Check beat map 
    for beat_time, move in beat_map: 
        if abs(current_time - beat_time) < 250:  # 250ms window 
            if results.pose_landmarks and check_move(move, 
results.pose_landmarks.landmark): 
                print("HIT!") 
 
    # Render UI (simplified) 
    screen.fill((0, 0, 0)) 
    # ... draw game elements here ... 
    pygame.display.flip() 
    clock.tick(30) 
Challenges & Solutions 
Latency: Use lightweight models and skip frames if needed. 
 
Varying Body Types: Normalize joint positions to the player’s torso size. 
 
Complex Moves: Break moves into phases (e.g., "wind-up" and "kick"). 
 
Lighting/Background: Use background subtraction or depth cameras. 
 
This approach creates an engaging, movement-based rhythm game where players 
physically perform dance moves tracked via camera.  
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Implementing rhythm synchronization in Godot involves aligning game events (like 
character movements, enemy attacks, or visual effects) to the beat of background 
music. Here's a step-by-step guide: 
 
1. Core Concept: The Conductor 
Create a "Conductor" (autoload/singleton) that tracks musical timing. It calculates beat 
positions using the song's BPM and compensates for audio latency. 
 
Conductor Script (conductor.gd): 
 
gdscript 
extends Node 
 
# Configuration 
var bpm: float = 128.0  # Beats Per Minute 
var measures: int = 4    # Beats per measure (e.g., 4/4 time) 
var song_position: float = 0.0 
var song_position_in_beats: int = 0 
var sec_per_beat: float = 0.0 
var last_beat: int = 0 
var offset: float = 0.45  # Calibration offset (adjust per project) 
 
# Audio 
var music_player: AudioStreamPlayer 
 
# Signals 
signal beat(position)     # Emitted every beat (position = beat count) 
signal measure(position)  # Emitted every measure (position = measure count) 
 
func _ready(): 
    sec_per_beat = 60.0 / bpm 
    music_player = $AudioStreamPlayer  # Attach your AudioStreamPlayer node 
 
func start_song(): 
    song_position = 0.0 
    song_position_in_beats = 0 
    last_beat = 0 
    music_player.play() 
 
func _process(_delta): 
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    if music_player.playing: 
        # Calculate position with latency compensation 
        song_position = ( 
            music_player.get_playback_position() +  
            AudioServer.get_time_since_last_mix() -  
            AudioServer.get_output_latency() 
        ) - offset 
         
        # Track beats 
        song_position_in_beats = int(floor(song_position / sec_per_beat)) 
         
        # Emit signals on new beats 
        if song_position_in_beats > last_beat: 
            last_beat = song_position_in_beats 
            emit_signal("beat", song_position_in_beats) 
             
            # Emit measure signal every X beats 
            if song_position_in_beats % measures == 0: 
                emit_signal("measure", song_position_in_beats / measures) 
2. Setup the Conductor 
Create the Conductor: 
 
Attach conductor.gd to a node in a new scene. 
 
Add an AudioStreamPlayer as its child (load your music file). 
 
Save the scene as Conductor.tscn. 
 
Register as Autoload: 
 
Go to Project > Project Settings > Autoload. 
 
Add Conductor.tscn as a singleton. 
 
3. Synchronize Game Elements 
Connect game objects to the Conductor's signals to trigger timed actions. 
 
Example: Character Jump on Beat 
 
gdscript 
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extends CharacterBody2D 
 
func _ready(): 
    Conductor.connect("beat", _on_beat) 
 
func _on_beat(beat_count): 
    if beat_count % 2 == 0:  # Jump every 2 beats 
        velocity.y = -500 
        jump_animation.play() 
Example: Enemy Attack on Measure 
 
gdscript 
extends Node2D 
 
func _ready(): 
    Conductor.connect("measure", _on_measure) 
 
func _on_measure(measure_count): 
    if measure_count % 2 == 0:  # Attack every 2 measures 
        start_attack_pattern() 
4. Calibration & Testing 
Offset Calibration: 
 
Adjust offset in the Conductor until actions align perfectly with beats. 
 
Use a debug label to show beat numbers: 
 
gdscript 
func _on_beat(beat_count): 
    $DebugLabel.text = "BEAT: %d" % beat_count 
Visual Beat Indicator (Optional): 
 
Create a UI element that flashes on beat: 
 
gdscript 
func _on_beat(_beat): 
    $BeatIndicator.modulate = Color.RED 
    await get_tree().create_timer(0.05).timeout 
    $BeatIndicator.modulate = Color.WHITE 
5. Advanced Techniques 
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Sub-Beats: Divide beats for 8th/16th notes: 
 
gdscript 
var sub_beats = 4  # Quarter notes per beat 
var current_sub_beat = int(floor(song_position / (sec_per_beat / sub_beats))) 
Dynamic BPM: Modify bpm/sec_per_beat during runtime for tempo changes. 
 
Input Timing Windows: 
 
gdscript 
func _input(event): 
    if event.is_action_pressed("action"): 
        var time_since_beat = fmod(song_position, sec_per_beat) 
        if time_since_beat < 0.1:  # 100ms window 
            perfect_hit() 
Troubleshooting Tips 
Audio Latency: Test on target devices; adjust offset per platform. 
 
Missed First Beat: Start music slightly delayed using a Timer. 
 
Drift Issues: Use AudioStreamPlayer (not AudioStreamPlayer2D/3D). 
 
This setup creates a robust rhythm synchronization system. Adjust BPM, offset, and 
signal connections to match your game's requirements! 
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