

Style Tracking Expressive Pad System ​
Arcade Dance Rhythm Game Leveraging CV Pose Detection,

Depth-Optimized Optics, and Time-multiplexed Illumination

Group 8 Authors
Christopher

Solanilla
Jani Jon
Lumibao

Kaila Peeples Andres Abrams Blake Whitaker

Computer
Engineering

Computer
Engineering

Photonics and
Science

Engineering

Computer
Engineering

Electrical
Engineering

Reviewer Committee:

Dr. Stephen Eikenberry​ CREOL​ Professor
Dr. Saleem Sahawneh​ ECE​ ​ Lecturer

Dr. Justin Phelps​ ​ ECE​ ​ Professor

Mentor:
Dr. Chung Yong Chan

Dr. Aravinda Kar

2. Project Description

2.1 Motivation and Background

In recent years, rhythm games have surged in popularity among both casual and
competitive gamers. Titles like Dance Dance Revolution (DDR), Pump It Up (PIU), and
StepManiaX offer not only fast-paced gameplay but also unique forms of physical
interaction that make them stand out from traditional video games. Among these,
StepManiaX has played a particularly influential role in the inception of our project, as it
is actively available at a UCF campus restaurant and regularly enjoyed by students.

Figure 2.1 StepManiax on UCF at Knightros

For readers unfamiliar with rhythm games: players typically choose a song, and as the
music plays, visual cues (usually arrows) scroll on the screen toward a target zone.
Players must step on corresponding arrows on the dance pad in time with the music.
Successful timing earns points, while misses break combos and reduce scores. In
games aforementioned, players are often using their feet to step on panels that are
labeled with directional arrows. In DDR it is with the up down left right arrows,

1

StepManiaX has the same but with an additional center arrow, and Pump it Up has
diagonal arrows instead of the 4 up down left right arrows with the center note as well.

As a lifelong fan of rhythm games, I’ve always aspired to create a game that blends the
fast-paced footwork of DDR and PIU with innovative mechanics that reward not only
timing accuracy but also expressive performance. This passion became the foundation
for our senior design project: a custom-built rhythm arcade machine that reimagines the
traditional dance pad format. Our system features a unique 9-panel layout, combining
the four cardinal directions, four diagonals, and a center panel. This effectively merges
the core mechanics of DDR and PIU into a new hybrid experience.

To take it a step further, we are integrating a computer vision system capable of
analyzing player movement during gameplay. This system detects whether the player
completes the charts with minimal effort or performs dynamic, stylish movements such
as spins or arm gestures. Players who demonstrate expressive flair are rewarded
through a secondary metric we call the Style Score, adding a new dimension to
gameplay that celebrates both precision and creativity.

Our team brings a diverse range of skills and experiences to the project. I contribute
both a strong passion for rhythm games and hands-on experience from developing a
basic dance pad prototype in the past. One of our teammates has a background in
dance, offering valuable insight into expressive movement and physical design. Another
teammate serves as the president of the UCF Esports Club, providing a competitive
gaming perspective that helps shape our gameplay mechanics and balance. All three of
us are Computer Engineering majors with solid experience in hardware integration and
software development. Additionally, the teammate with a dance background is
well-versed in PCB design, making them an asset for developing the input hardware.
Our fourth member, a Photonics Science and Engineering student, brings specialized
expertise in optics. This makes her an asset for enhancing the performance of our
computer vision system through lens design or optimization.

We believe this blend of technical, creative, and performance-oriented backgrounds
makes our team uniquely positioned to create a rhythm game that is both entertaining
and technically ambitious. By combining game development, embedded hardware, and
real-time computer vision, we aim to push the boundaries of traditional rhythm games.
Ultimately, we envision this system not just as a school project, but as a potential
commercial product suitable for both arcade and home use. Overall, our project is a
tribute to the genre we love and an innovative leap forward in how rhythm games are
played.

2.2 Existing Product/Past Project/Prior Related Work​

2.2.1 Dance Dance Revolution

Dance Dance Revolution (DDR), developed by Konami in 1998, is one of the most
iconic rhythm games in the world. Players step on a 4-panel dance pad — with up,
down, left, and right directional arrows — in time with scrolling on-screen cues

2

synchronized to music. DDR is widely recognized for its role in popularizing rhythm
games globally and has been featured in both arcade and home console formats. It
uses pressure-sensitive panels and a scoring system based on timing accuracy,
rewarding "Perfect," "Great," or "Miss" for each input. However, the game focuses
purely on foot-based precision and lacks a scoring component for stylistic or expressive
movement. Players who still choose to complete charts with style are called “free
stylers” and are highly respected in the community for completing easy to mid level
charts with very hard expressive and complicated movement. This movement can range
anywhere from spinning, to swaying the arms, to handstands and break dancing.

2.2.2 Pump It Up

Pump It Up (PIU), developed by Andamiro in 1999, is a 5-panel dance rhythm game
that includes four diagonally placed panels and a center panel. PIU emphasizes
freestyle movement more than DDR and is especially popular in South Korea. While
PIU retains the same timing-based scoring mechanics as DDR, it introduces more
physically varied and complex choreography due to its diagonal input layout.
Nonetheless, PIU still lacks any integrated camera system or style-based scoring . Just
like DDR, PIU has the same respected players who complete charts with freestyling
despite still not being rewarded for doing so in game.

2.2.3 Dance Around

Dance Around is a rhythm game similar to Dance Dance Revolution but instead of using
pressure-sensitive dance pads, it relies solely on a camera-based motion tracking
system. This is done by using VisionPose to generate a 3D model of the player’s body
and assessing their dance performance based on their ability to match the poses given
and their own expressive movements[2]. During the game, players are prompted to
mimic target poses displayed on the monitor, with visual cues that indicate the proper
hand or foot placement. However, customer feedback has highlighted several limitations
of this system. Customers have stated that the game has consitently misevaluated full
body movements and is only capable of capturing the hand and foot positions of the
players reliably[3]. Additionally, customers have noted that the calibration process could
be overly lengthy, which detracts from the ease of use.

2.2.4 Dancerush Stardom

Developed by Konami, DANCERUSH STARDOM is a freestyle rhythm dance game that
eliminates the traditional dance pad structure in favor of a large pressure-sensitive
surface. The game uses a camera system to provide feedback and record gameplay,
but the scoring is still based on foot movement across a large flat pad with visual
indicators for steps and slides. The game promotes freestyle dancing, including spins
and slides, and is considered more modern and expressive than DDR. However, like
Dance Around, it does not feature a true pose recognition or performance grading
system. Flair and dance expression are encouraged but not quantitatively rewarded
within the game mechanics.

3

2.2.5 StepManiaX

StepManiaX is a rhythm game inspired by DDR and PIU and developed by the creators
of StepMania. It uses a 5-panel pad layout with center, up, down, left, and right panels,
and is designed for high durability and fitness applications. StepManiaX includes a
touchscreen interface and modernized music selection UI, with content designed to be
accessible for both casual and serious players. While it modernizes the user experience
and supports a wide range of difficulty levels, it retains the traditional scoring focus on
timing accuracy. There is no implementation of camera-based tracking or any scoring
system that rewards visual expression or dance style beyond note timing.

Figure 2.2 Illustration prototype of StepManiaX, a 5 panel Dance Rhythm Game Arcade
Cabinet[6]

2.3 Project Goals

The main goal of this project is to design and build a self-contained arcade-style rhythm
game system that includes both the physical dance pad hardware and the video game
software. The system will feature a 9-panel layout to allow for expanded gameplay
mechanics. In addition to foot-based input, the game will include a computer vision
system that evaluates the player’s expressive movement using a live camera feed. Our
goal is to create an experience that rewards both precision and performance, allowing
players to interact with the game through both steps and body movements. The final
product will include a working rhythm game engine, a functioning pad-to-PC interface,
custom chart creation tools, and vision-based style scoring.

4

2.3.1 Hardware​

Basic Goals:

●​ ensure responsive and accurate force detection using force-sensing resistors
●​ design a singlet aspherical lens to maximize depth of field and image sharpness
●​ enhance lightning efficiency by implementing synchronized time-multiplexed LED

zones
●​ develop 9-direction interactive arrow pads with RGB LED feedback support

responsive gameplay

Advanced Goals:

●​ improve PCB computational time and reduce system cost
●​ refine pad design for compactness and portability
●​ improve image clarity by optimizing aspherical lens design.
●​ optimize LED beam angles and panel placement so there is minimal shadowing

across the full motion range

Stretch Goals:

●​ expand system capabilities through wireless connectivity
●​ improve portability through a foldable dance pad design
●​ investigate dual-focal-path optics for enhanced depth sensing.
●​ develop a lighting system that dynamically adjusts LED intensity based on player

position

2.3.2 Software

Basic Goals

●​ develop a custom rhythm game engine tailored to the 9-panel system
●​ design an intuitive interface that allows players to select songs and view their

performance results
●​ design the game system to be able to process computer vision locally
●​ reward the player for executing certain poses during gameplay

Advanced Goals

●​ include a built-in editor that allows players to create and customize their own
charts

●​ improve the accuracy for pose detection utilizing a special lens
●​ offer a default library of preloaded songs for immediate play

Stretch Goals

●​ allow players to log in, save scores, and compete on a global leaderboard.
●​ create a mobile app for users to easily login and track data during gameplay
●​ add configurable startup modes, including an arcade mode with limited songs per

play or personal use with no restrictions

5

2.4 Objectives

We aim to complete the following specific tasks over the course of SD1 and early SD2.
These objectives are listed in the rough order we plan to execute them, starting from
component acquisition and hardware assembly to basic software integration and vision
feature prototyping.

1.​ Acquire all essential components: order FSR sensors, RGB LEDs,
microcontroller (MCU), Raspberry Pi, USB connectors, power regulators, and
camera module based on BOM list.​

2.​ Design and fabricate the dance pad platform: cut and assemble the frame
using plywood and aluminum, and mount transparent top layers and non-slip
base.​

3.​ Design a custom PCB schematic: using KiCad or similar, create and route a
PCB that connects FSR sensors, LEDs, and MCU. Ensure enough GPIOs and
power regulation are included.​

4.​ Order and assemble PCB: send design for fabrication through JLPCB or
cheaper manufacturers and assemble the physical board with soldered
components and headers.​

5.​ Write and read microcontroller firmware: design, test, and read analog signals
from FSRs and convert them into digital keypress events via USB HID protocol.​

6.​ Test PCB + FSR response time: use a debug script to confirm low-latency
response (<10ms) when pressing panels.​

7.​ Integrate pad input with PC: confirm that pressing physical panels triggers
keyboard inputs correctly on a connected computer (e.g., using a diagnostic test
page).​

8.​ Initialize the GitHub repository: create Github repository for all members and
set up version control for both hardware schematics and game software.​

9.​ Begin a Godot project for the rhythm game engine: set up a basic Godot 4.3
scene with a UI, note spawning, and music synchronization framework.​

10.​Map keyboard inputs to note triggers: use Godot and test gameplay using
manual inputs (before full integration).​

11.​Design and implement a basic UI: create song selection, results screen, and
audio-visual feedback for note accuracy (e.g., Perfect/Good/Miss text).​

6

12.​Write a chart parser and loader: read external step charts from a JSON or
custom format and spawn notes accordingly.​

13.​Connect the pad to the game: test real gameplay — stepping on the pad
triggers notes and feedback in the game engine.​

14.​Integrate camera with Raspberry Pi: verify that real-time feed is available to
the game via local network or USB interface.​

15.​Use a pre-trained pose detection library: use OpenCV, Media Pipe, or
OpenPose to extract body key points from live video.​

16.​Detect key Poses and Gestures: aim to design the STEPS system to have the
ability to detect specific poses from our list of poses including the Muscle Man
pose, the What? pose, the Mantis pose, and the Samurai pose. ​

17.​Develop a basic Style Score system: create a Style Score system that assigns
bonus points based on detected expressive movements.​

18.​Build a simple chart editor UI: develop a chart editor that can allow the player
or moderator to manually align step notes to music and export them for testing.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​

19.​Design a custom aspherical lens system: design a custom lens system to
resolve ~1mm features across a 40cm field of view at 1.8m distance.​

20.​Generate accurate ray layouts in Zemax: create layouts to evaluate chromatic
aberration and field sharpness.​ ​ ​ ​ ​ ​ ​ ​
​ .​ ​ ​

21.​Select a low-cost camera sensor: buy a low-cost camera sensor then configure
the optical system to minimize data throughput by reducing the field of view and
processed resolution to ≤ 1.5MP.​
​ ​ ​

22.​Prototype and test multiple lens configurations: ensure lens and camera
sensor are coaxially aligned and geometrically compatible.​ ​ ​ ​
​

23.​Design a time-multiplexed LED illumination system with zoned control:
ensure consistent full-body visibility of the player throughout dynamic motion.​
​ ​ ​ ​ ​ ​

24.​Quantitatively evaluate optical performance: compare expected vs. actual
image sharpness and distortion using test charts or calibration rigs.​ ​ ​
​ ​

25.​Document each milestone: post photos, commit history, and GitHub issues,
and ensure each part is demo-ready for SD1 and SD2 deliverables.

7

2.4.2 Prototype illustration/Blueprint

Figure 2.3 Electronic Blueprint Prototype Illustration

8

Figure 2.4 Dance Pad 3D Model

Figure 2.5 Schematic of the optical and illumination system for full-body motion capture
(3D base model generated using ChatGPT image tools; annotations and system
overlays by author) .

9

2.5 Project Features and Functionalities

The primary goal of this project is to develop a working proof-of-concept for a new kind
of dance rhythm game that integrates physical input with computer vision-based
expression tracking. The focus is on delivering a functional and demonstrable system
that includes three core components: a responsive 9-panel dance pad, a custom rhythm
video game engine, and a vision system that scores player movement based on style
and expressiveness.

At the hardware level, the dance pad will use Force-Sensing Resistors (FSRs) beneath
each panel to detect foot pressure and translate those inputs into digital signals via a
microcontroller. The signals are interpreted as button presses in-game, allowing for
responsive gameplay. Each panel will also include LED lighting to provide immediate
visual feedback based on the game’s state and player interaction. While
commercial-grade materials like metal panels or acrylic overlays would be ideal, the
immediate priority is to build a stable, functional pad using accessible prototyping
materials to prove the input system works reliably.

The software side features a rhythm game engine tailored to the 9-direction input
system. Players will step on directional pads in sync with music, guided by scrolling
notes on screen. The game will evaluate the player’s timing accuracy and display
scores at the end of each round. Alongside traditional gameplay scoring, a connected
camera system will assess the player’s full-body movement using a pose detection
library. Based on the amplitude, variation, and expressiveness of the player’s dance, the
game will generate a secondary “style score.” This adds a creative and engaging layer
of performance evaluation beyond pure timing.

A basic user interface will allow for song selection, score displays, and navigation
through the system. A chart editor tool will also be included, enabling users to import
music and design their own charts either manually or with the help of automatic
generation tools.

Although not essential to the proof-of-concept, we also envision the long-term possibility
of turning the system into a self-contained arcade-style unit. Features like a cabinet
enclosure, co-op integration, player logins, and online leaderboards are considered
stretch goals that could be implemented later with more resources. The project is
designed with scalability in mind: the core technology should work independently, while
leaving room for future upgrades to polish and deploy the system as a full commercial
or open-source product.

2.5.1 Style Score and Pose-Based Evaluation System

In addition to the traditional timing-based score system, our game introduces a novel
secondary metric known as the Style Score, which rewards players for striking
expressive and clearly defined poses at designated times during gameplay. Unlike

10

freeform dance scoring, our system focuses on detecting static full-body poses that can
be consistently recognized by a pose estimation algorithm.

We intentionally limit the scope of detection to distinct, predefined poses that can be
reliably tracked in real-time using a single camera. This approach improves detection
accuracy and reduces computational load while still encouraging expressive movement.

During gameplay, specific pose prompts will appear, similar to freestyle moments or
bonus sections. These pose prompts will be displayed in a small icon area on screen
during designated freestyle sections, giving players 2–3 seconds to match the target
pose. If the player strikes the correct pose at the right time, they are awarded bonus
points to their Style Score. This incentivizes physical creativity and rewards players who
engage more fully with the visual performance aspect of rhythm games.

Each pose is chosen based on ease of detection, body separation, and iconic visual
silhouette (all poses are mirrored when displayed to the player):

●​ Muscle Man Pose: Both arms raised as if you’re flexing biceps’
●​ What? Pose: Both arms out as if you don’t know about something
●​ Point Up Pose: Left arm behind the head, pointing out to a plane
●​ Tough Guy Pose: Crossed arms
●​ Samurai Pose : Legs wide apart, one hand near waist as if gripping a katana,

other arm pointing forward or out.
●​ Mantis Pose: Right arm raised in front of the chest, left bent above the head,

and right leg up with knee up
●​ T Pose: Both arms stretched straight out to the side (useful base for debugging).

Each pose will have keypoint thresholds that define acceptable angles and positions
such as a certain limb being within a range of 20 degrees from the desired state. This
will be validated using a pre-trained MediaPipe/OpenPose[5] model.

Muscle Man Pose

What? Pose

Point Up Pose

Tough Guy Pose

Samurai Pose

Mantis Pose

Figure 2.6 Images of the tentative poses (modeled using PoseMy.Art)

11

2.6 Requirements and Specifications

2.6.1 Parts Specification Requirements Table

Table 2.1 List of all of the project’s engineering requirements and specifications.
Highlighted in yellow are specifications that will be demonstrated

Parameter Value

Overall System

Active power consumption ≤ 200 W

Dance Pad

Size ~34.5 x 34.5 x 2.5 in

Weight ≤ 30 lbs

Cost ≤ $300

Printed Circuit Board (PCB)

Size ≤ 10 cm2

Display

Frame rate ≥ 60 fps

Resolution ≥ 1280 x 720 pixels

Refresh rate ≥ 120 Hz

Dance Pad Panels

Size ~10 in2

Input response time < 10 ms (almost instantaneous)

Force range input 0-100 N

Camera Module

Pose identification accuracy ≥ 95% detection accuracy for body/limb
motion

Full-body coverage area ≥400mm field width at 1m distance, no
cutoff or blind spots

12

Power Supply Unit

Input voltage from wall power via AC-DC
converter

≥ 12 V

Output power ≥ 1.65W (≥ 0.5A at 3.3V)

LED Panel

illumination uniformity of the player ≥ 90%

Lighting response time ≤ 10ms

Player visibility (shadow coverage) Full Body at 1m

2.6.2 Notes on Specifications​

Overall System
For active power consumption, most typical dance arcade machines are around
100-200 watts, so for our system we aim to have set our limit to 200 watts.
​
Dance Pad
For increased portability and potentially affordability and maintenance, a size of about
34.5 x 34.5 x 2.5 inches and weight of at most 30 lbs would be optimal for the player
and owner of the pad.

Printed Circuit Board (PCB)
As mentioned before in goals, we want to minimize the size of the PCB as much as we
can while also making it easy enough to check for errors on the design.

Display
Whether it be a PC or game system, the system requirements are the same. In order to
run our custom made game, the system must be able to run at least 60 frames per
second, have a resolution of at least 1280 * 720 pixels, and have a refresh rate of at
least 120 Hz.

Dance Pad Panel
Response time from the FSRs must be almost instantaneous and this is very important
because rhythm games are dependent on timing of when commands are hit. There
should be little to no latency when pressing the pads and triggering the FSRs.
Moreover, the amount of force applied needed to trigger the FSRs must be 0-100 N so
that even the smallest amount of pressure should be enough to send a signal back to
the MCU.

13

Camera Module
To meet ≥95% tracking accuracy and full-body coverage, the camera must maintain
sufficient resolution, wide FOV (≥ 400 mm at 1m), and minimal distortion. This ensures
consistent player visibility without cutoff or blind spots.

Power Supply Unit
The pad is powered through a wall power cable which should be more than sufficient
enough to power the pad. The input voltage of at least 12 V is required to efficiently
power the whole pad, and we aim to output a power of at least 1.65 watts.

LED Panels
To ensure the player is always fully illuminated regardless of body position or
movement, the LED panels must maintain illumination uniformity of ≥ 90% and deliver
sufficient brightness to achieve full body visibility at a 1-meter distance.

2.7 Hardware Block Diagram

Figure 2.7 Hardware Block Diagram showcasing work distribution and major
components of the design

14

2.8 Software Block Diagram

🟧Andres
🟪Christopher

Figure 2.8 Software Block Diagram gameplay
Gameplay and Chart Creator

15

2.10 House of Quality

Figure 2.9 House of Quality

16

3. Research
3.1 Technologies

3.1.1 Embedded Systems

To integrate embedded systems into our STEPS platform, we require a dedicated
computing component. The two most suitable options are a microcontroller unit (MCU)
or a single-board computer (SBC). Each has its strengths and tradeoffs, but only one is
better suited to execute the functionality required for our project.

SBCs offer significantly higher processing power than MCUs, making them capable of
running full operating systems, graphical interfaces, and multitasking. However, the
tradeoff is that they also consume more power, require more complex infrastructure,
and lack real-time response by default. Meanwhile, MCUs are optimized for fast,
real-time control, which is critical for rhythm game input responsiveness. They are also
cheaper, easier to wire, and consume less power, making them ideal for precise button
and LED control. Therefore, we take a deeper dive into both options to evaluate which
is most optimal for our dance pad design.

3.1.1.1 MCU vs SBC

MCUs are designed for task-specific control, particularly those that require low latency
and real-time response, such as reading sensor data or controlling actuators. In our
system, for input detection, an MCU would allow for minimal system latency, which is a
critical factor for timing accuracy in rhythm games.

MCUs also offer faster boot-up times and simpler circuit integration, making them easier
to debug and more reliable during development. Most MCUs include a large number of
GPIO pins, many with PWM support, which makes them especially suitable for handling
LEDs and button inputs with minimal delay. Their hardware simplicity aids in easier
troubleshooting and faster hardware prototyping. However, MCUs typically require
low-level programming (e.g., in C or C++) and are not capable of natively handling
advanced UI, graphics, or audio features. As a result, we would require external
modules if we were to implement these into our design.

In terms of cost, most MCU chips cost under $10, making them ideal for scalable,
low-cost embedded designs. If the board is damaged or needs revision, the low cost of
replacement makes development more forgiving.

In contrast, SBCs offer significantly higher processing power and are well-suited for
applications involving graphical interfaces, audio, or wireless communication. They run
full operating systems, typically Linux-based, and can be programmed using high-level
languages like Python or Java, which simplifies software development.

However, their non-deterministic response time, due to OS-level multitasking, makes
them less reliable for real-time input detection. This could introduce latency or jitter in

17

detecting panel hits, affecting the gameplay experience. SBCs also have longer boot
times, higher power consumption, and are generally more complex to integrate into
custom PCB designs. On top of that, SBCs typically cost between $35–$60, which
increases development risk if the board is damaged or requires replacement.

3.1.1.2 MCU is the Better Option… But Why?

While neither MCUs nor SBCs are perfect in every category, MCUs are the more
optimal choice for our dance pad design due to their fast and predictable response
times, lower power consumption, smaller footprint, and significantly lower cost. As
shown in Table 3.1 below, the MCU excels in the areas most critical to our engineering
and marketing goals, such as system responsiveness, efficiency, and affordability, as
previously outlined in Figure 2.9 House of Quality.

To meet cost targets, we must use components that are low-cost yet reliable, and MCUs
typically cost under $10, making them ideal for both prototyping and scalable
production. Power consumption is another key concern, especially since our system will
run multiple FSRs and RGB LEDs simultaneously, and MCUs are optimized for energy
efficiency, unlike SBCs which consume more power even when idle. Real-time
performance is especially critical for a rhythm-based game, where millisecond-level
delays can affect gameplay. MCUs provide immediate input handling and low-latency
output control, which are difficult to achieve on SBCs running multitasking operating
systems without extensive tuning.

While SBCs may offer advantages like better multimedia processing or easier
development with high-level languages, they introduce longer boot times, higher costs,
and non-deterministic behavior, making them less suitable for a system where precision
and timing matter most. MCUs, on the other hand, are straightforward to integrate,
faster to initialize, and allow for fine-grained control over every component in the
system.

Overall, MCUs give us the performance and reliability needed for fast input detection,
smooth LED animations, and efficient control, all while keeping costs, power, and
complexity well within our project’s constraints.

Table 3.1 Comparison table between MCUs and SBCs using their features

Feature Microcontroller (MCU) Single Board Computer (SBC)

Processing Power ✓

Real-Time Response ✓

Design Complexity ✓

Coding Complexity ✓

18

Power Consumption ✓

I/O Handling ✓

UI Support ✓

Boot Time ✓

Cost ✓

3.1.1.3 Arduino

Arduino is a series of open-source microcontroller boards designed for ease of use in
both hardware and software. They are especially popular in the prototyping and
hobbyist community due to their beginner-friendly development environment (Arduino
IDE), and extensive library support for I/O, sensors, LEDs, and communication
protocols. Arduino boards typically use AVR-based microcontrollers, although some
variants use ARM cores. In this section, we look at three of the most fitting boards for
our dance pad design: Arduino Uno, Arduino Mega 2560, and Arduino Leonardo.

One of Arduino’s most iconic boards is the Arduino Uno, which uses the 8-bit
ATmega328P microcontroller. It runs at a clock speed of 16 MHz, with 32 KB of flash
memory, 2 KB of SRAM, and 1 KB of EEPROM. The Uno includes 14 digital I/O pins (6
with PWM support) and 6 analog inputs (ADC). It’s widely supported and extremely
simple to program and wire, making it a go-to for prototyping. However, it lacks native
USB HID support, which means it cannot act as a USB joystick or keyboard without
external USB-serial bridging. For our dance pad, the Uno would fall short on both ADC
and PWM channels unless additional multiplexing components were added.​
One of Arduino’s higher-end boards is the Arduino Mega 2560, which features the
ATmega2560 microcontroller. Like the Uno, it runs at 16 MHz, but includes significantly
more memory: 256 KB of flash, 8 KB of SRAM, and 4 KB of EEPROM. It provides 54
GPIO pins, 15 PWM channels, 16 ADC channels, and 4 UART serial ports, making it
highly capable of handling our dance pad’s inputs. The Mega does not support native
USB HID, but its I/O abundance makes it ideal for wiring-heavy applications.​
​
Another one of Arduino’s boards is the Arduino Leonardo, which uses the ATmega32U4
microcontroller. It also runs at 16 MHz, with 32 KB of flash memory, 2.5 KB of SRAM,
and 1 KB of EEPROM. It provides 20 GPIO pins, 7 PWM channels, and 12 ADC
channels. Its standout feature is native USB HID support, allowing it to behave like a
USB keyboard or joystick, a feature perfect for our design. While it offers fewer I/O pins
than the Mega, it still covers our minimum requirements, and any shortfall can be
handled using external components.

19

Table 3.2 Arduino boards and their features comparison table

Feature Arduino Uno Arduino Mega 2560 Arduino Leonardo

Main MCU ATmega328P ATmega2560 ATmega32U4

Clock Speed 16 MHz 16 MHz 16 MHz

Flash Memory 32 KB 256 KB 32 KB

SRAM 2 KB 8 KB 2.5 KB

EEPROM 1 KB 4 KB 1 KB

GPIO Pins 14 54 20

PWM Channels 6 15 7

ADC Inputs 6 16 12

USB Communication serial-to-USB serial-to-USB native USB

USB HID Support none none included

Serial Ports (UART) 1 4 1

Active Power
Consumption

Moderate Moderate-High Moderate

MCU Chip Cost ~$3 ~$8 ~$4

3.1.1.4 Teensy

Teensy is a powerful and compact microcontroller board series developed by PJRC.
While slightly less common than Arduino in beginner projects, Teensy is widely used in
performance-critical embedded systems due to its speed, USB capabilities, and
real-time performance. Most Teensy boards use ARM Cortex-M cores, which were
specifically designed for embedded applications to offer high energy efficiency and low
cost. All Teensy boards also support native USB HID, making them excellent for
applications that require low-latency input handling, such as rhythm games. In this
section, we explore four Teensy models: Teensy 2.0, Teensy 3.2, Teensy LC (Low Cost),
and Teensy 4.1.

The oldest version of them all is the Teensy 2.0 (released in 2009). Out of our other
Teensy options, Teensy 2.0 is the only one that doesn’t use an ARM core. Instead,
much like the Arduino Leonardo, it uses an ATmega32U4 8-bit automatic voltage
regulator (AVR). This means that the Teensy 2.0 has almost the same exact
specifications as an Arduino Leonardo. For instance, both run at a clock of 16 MHz and

20

include 32 KB of flash memory, 2.5 KB of SRAM, 12 ADC channels, and USB HID
support. It provides 25 GPIO pins, which is slightly more than the Leonardo’s 20.
Despite its age, Teensy 2.0 remains a lightweight and reliable choice for simple USB
input devices. However, it lacks the processing power and memory needed for
advanced LED animations or real-time multitasking.

Released in 2014, the Teensy 3.2 offers a major leap in performance over the 2.0. It
features an MK20DX256VLH7 MCU with a 72 MHz ARM Cortex-M4 processor,
supporting both DSP instructions and hardware floating point. It includes 256 KB of
flash memory, 64 KB of SRAM, and 34 GPIO pins. The Teensy 3.2 supports 21 analog
inputs (ADC) and 12 PWM outputs, and unlike Teensy 2.0, the ADC is 13-bit (not 16-bit
as sometimes misreported). It supports USB HID, has robust NeoPixel support
(including DMA-based LED control), and is powerful enough to handle real-time step
detection, LED animations, and game communication simultaneously. It offers an
excellent balance between performance, GPIO availability, and price, making it a strong
candidate for mid-level embedded designs like our design.

Introduced in 2015, the Teensy LC is a budget-friendly alternative that still offers modern
features. It uses the MKL26Z64VFT4 MCU, based on a 48 MHz ARM Cortex-M0+
processor. It comes with 62 KB of flash memory, 8 KB of SRAM, and 27 GPIO pins. It
includes 13 analog inputs and 10 PWM outputs, and it supports USB HID. While not as
fast as the 3.2, the Teensy LC still outperforms Teensy 2.0 in nearly all areas. It does
not support DMA for NeoPixel LED control, meaning LED animations may add CPU
overhead. Still, its low cost and decent GPIO make it a practical option if budget is a
major constraint.

The most powerful board in the series, Teensy 4.1, was released in 2020 and uses the
MIMXRT1062 MCU with an ARM Cortex-M7 processor running at a blazing 600 MHz. It
includes 1 MB of SRAM, 8 MB of QSPI flash memory, and supports external PSRAM or
flash via expansion pads. It features 55 GPIO pins, 18 analog inputs, and up to 35 PWM
outputs, with USB High-Speed (480 Mbps) support and full native USB HID. Unlike
Teensy 3.2 or LC, Teensy 4.1 also supports cache, branch prediction, and complex
multitasking, making it ideal for fast input response, dynamic LED control, and
interfacing with multiple peripherals simultaneously. While the ADC is only 12-bit and
the analog pin count is slightly lower than Teensy 3.2, the vast processing power and
memory make Teensy 4.1 a top-tier choice.

21

Table 3.3 Teensy boards and their features comparison table

Feature Teensy 2.0 Teensy 3.2 Teensy LC Teensy 4.1

MCU Chip ATmega32U4 MK20DX256VLH7 MKL26Z64VFT4 MIMXRT1062

Structure 8-bit AVR ARM Cortex-M4 ARM
Cortex-M0+

ARM
Cortex-M7

Clock Speed 16 MHz 72 MHz 48 MHz 600 MHz

Native USB
Speed

12 Mbps​
(full speed)

12 Mbps​
(full speed)

12 Mbps​
(full speed)

480 Mbps​
(high speed)

Flash
Memory

32 KB 256 KB 62 KB 8 MB

SRAM 2.5 KB 64 KB 8 KB 1024 KB

GPIO Pins 25 34 27 55

PWM
Channels

7 12 10 35

ADC Inputs 12 (12-bit) 21 (13-bit) 13 (12-bit) 18 (12-bit)

Active Power
Consumption

Low Moderate Low High-Very High

MCU Chip
Cost

~$4 ~$6-9 ~$2-4 ~$7-11

3.1.1.5 Raspberry Pi Pico (RP2040)

Although there are multiple other Raspberry Pi series like Raspberry Pi 4 and
Raspberry Pi Zero, they are not efficient enough to be considered for our design. Due to
the fact that most other Raspberry Pi use Linux which can make them heavier on power
and boot time, less reliable when it comes to real-time responses, harder to interface
with timing-sensitive components, and more complex to integrate into our dance pad’s
PCB. The series we want to look at, however, is the Raspberry Pi Pico series.

The Raspberry Pi Pico is a microcontroller, not a general-purpose computer, that uses
its own microcontroller chip, the RP2040. The RP2040 is a dual-core Cortex M0+
microcontroller chip that’s known for being affordable while having a high performance.
Because the RP2040 is made of bare silicon, it comes with a QFN-56 package, which
supports compact PCB design and high-speed operation, allowing it to have good
thermal dissipation, short lead lengths for better signal integrity, and maintain a compact
size for better use of space. However, having the QFN-56 package also makes

22

soldering into the PCB board challenging if done by someone with little to no
experience.

The Raspberry Pi Pico runs at a clock speed of 133 MHz, making it well-suited for
performance-intensive tasks. Much like the Teensy boards, Pico also supports USB
HID, though it requires software implementation via libraries like the Pico SDK or
CircuitPython, and no external components or converters are needed for HID
communication. However, while the Pico provides 26 GPIO pins and 16 PWM channels,
it includes only 3 12-bit ADC channels, which is insufficient to directly read analog
signals from all 9 FSR-based pads. To support more analog inputs, external analog
multiplexers or ADC chips would be needed. In terms of memory, the Pico offers 2 MB
of flash and 264 KB of SRAM, which is significantly more than typical Arduino boards
and even some Teensy models. Overall, Raspberry Pi Pico’s RP2040 is a highly
affordable chip (~$1) capable of handling complex tasks at high speeds, while
maintaining low to moderate active power consumption. However, using this chip will
require external components, such as analog multiplexers for more ADC inputs, for our
design to be fully functional.

3.1.1.3 ESP32

The ESP32 is a series of low-cost, low-power system-on-a-chips (SOCs). MCU chips
used by ESP32 modules typically cost around $1-$3. What makes the ESP32 different
from traditional microcontrollers like AVR or RP2040 is that most ESP32 modules have
Wi-Fi and/or Bluetooth capabilities. In this section, we analyze and compare the ESP32
(WROOM-32), ESP32-S2, ESP32-S3, and ESP32-C3.

The ESP32-WROOM-32 is one of the earliest and most commonly used modules in the
ESP32 series. It features a dual-core 32-bit Xtensa LX6 processor and supports both
Wi-Fi and Bluetooth Classic + BLE. Despite being one of the older models, it can still
run at up to 240 MHz, making it capable of handling performance-heavy tasks. It comes
with 520 KB of SRAM and 4 MB of flash memory by default, though variants with 8 MB
or 16 MB of flash are also available. The chip provides up to 34 GPIO pins, 16 PWM
channels, and 18 ADC channels, which is sufficient for our design. However, one major
limitation is that it does not have native USB HID support without additional hardware.
To use the WROOM-32 in a USB-connected setup, we would need to add an external
USB-to-HID bridge chip or pair it with another microcontroller that supports USB HID
natively. Therefore, unless we design the DDR pad to be fully wireless, it may be more
practical to use another ESP32 variant that can support native USB HID directly.

The ESP32-S2 improves on the WROOM-32, most notably, by adding native USB
support. It features a single-core Xtensa LX7 processor that can run up to 240 MHz,
and, by default, includes 320 KB of SRAM and 4 MB of flash memory. Like other ESP32
modules, it supports Wi-Fi, but unlike the original WROOM-32, it does not support
Bluetooth. The chip provides up to 43 GPIO pins, 16 PWM channels, and 20 ADC
channels, which is slightly more compared to WROOM-32. What sets the ESP32-S2
apart is its native USB OTG support, which allows it to act as a USB HID device, such

23

as a gamepad or keyboard, without requiring any external USB bridge or extra MCU.
The main drawback is its single-core design, which limits multitasking performance
compared to dual-core models, but this tradeoff may be acceptable if real-time
responsiveness is properly managed.

The ESP32-S3 builds upon the capabilities of the S2 and is arguably the most
feature-rich variant in the ESP32 family for the design we’re aiming to achieve. It retains
native USB HID support, much like S2. It uses a dual-core Xtensa LX7 processor
running at up to 240 MHz, with 512 KB of SRAM and 128 KB of RTC memory, offering
more headroom for handling concurrent tasks such as sensor polling, LED animations,
and USB communication. The S3 has 45 GPIO pins, 8 PWM channels, 20 ADC
channels, and it expands functionality with BLE 5.0 support (though it lacks classic
Bluetooth). The ESP32-S3 is especially suitable for performance-demanding
applications that require both USB connectivity and multiple analog inputs, making it
one of the best choices for a wired dance pad built around a single microcontroller.

The ESP32-C3 is a compact, low-cost MCU in the ESP32 family that trades raw
performance for simplicity and power efficiency. It features a single-core 32-bit RISC-V
processor running at up to 160 MHz, with 400 KB of SRAM and 4 MB of flash memory.
While some variants of C3 can support external flash chips up to 16 MB, some don’t,
like the ESP32-C3-WROOM-02U. One of its most attractive features is its inclusion of
native USB 2.0 support, enabling it to function as a USB HID device without requiring
external USB-to-serial hardware. However, C3 only supports 22 GPIO pins, 6 hardware
LED PWM channels, and 6 ADC channels, which makes it unsuitable for reading all of
our dance pad’s inputs directly without the use of an analog multiplexer or external ADC
chip. It does support BLE 5.0, though it lacks classic Bluetooth. Overall, while it’s not as
powerful or feature-rich as the S2 or S3, the ESP32-C3 is a budget-friendly option for
our designs, especially if analog input limitations can be mitigated with external circuitry.

Table 3.4 ESP32 boards and their features comparison table

Feature ESP32-​

WROOM-32
ESP32-S2 ESP32-S3 ESP32-C3

MCU Chip ESP32-D0WD ESP32-S2 ESP32-S3 ESP32-C3

Structure Dual-core
Xtensa LX6

Single-core
LX7

Dual-core LX7 Single-core
RISC-V

Clock Speed 240 MHz 240 MHz 240 MHz 160 MHz

Flash Memory 4-16 MB 4-16 MB 4-16 MB 4-16 MB (some)

SRAM 520 KB 320 KB ​
(128 KB RTC)

512 KB​
(128 KB RTC)

400 KB

GPIO Pins 34 43 45 22

24

PWM Channels 16 16 8 6

ADC Inputs 18 20 20 6

Native USB None USB OTG USB OTG USB 2.0

Wi-Fi Yes Yes Yes Yes

Bluetooth Classic + BLE None BLE 5.0 BLE 5.0

Active Power
Consumption

High Moderate-High High Moderate

MCU Chip Cost ~$2-3 ~$2 ~$2.50-3 ~$1.50-2

3.1.1.3 STM32

STM32 is a series of 32-bit ARM Cortex-M microcontrollers. They’re known for having
long-term reliability, rich peripheral sets (i.e. ADC, USB, timers, etc.), native USB
support in most of its variants, strong real-time performance, great power efficiency, and
full support in IDEs like STM32CubeIDE, Keil, PlatformIO, and Arduino (for some
variants). We will be looking at the most common and fitting variant from each of the
following STM32 families: STM32F1, STM32F4, STM32F0, and STM32L4.

One of STM32F1’s most common MCU chips is the STM32F103C8, also known as the
"Blue Pill" chip. It features a 72 MHz Cortex-M3 processor, 64 KB of flash memory, and
20 KB of SRAM. It also has 37 GPIO pins, 15 PWM channels, and 10 ADC channels,
which is sufficient for our design requirements. STM32F103C8 supports native USB
Full-Speed, which can be configured for HID communication using STM32CubeMX and
the HAL libraries. However, being an older generation chip, it has limited memory for
larger LED effects or buffered inputs. Still, it remains a cost-effective and capable option
for our design.

One of STM32F4’s most common MCU chips is the STM32F407VG, which is a
high-performance microcontroller based on the 168 MHz Cortex-M4 core with DSP and
FPU support. It includes 1 MB of flash memory and 192 KB of SRAM. It also has 82
GPIO pins, 3 ADCs (12-bit) that can handle up to a total of 16 multiplexed input
channels, and supports up to 17 timers, several of which can generate PWM signals
with up to 4 channels per timer. It also supports both Full-Speed and High-Speed USB,
with High-Speed USB requiring an external PHY (Physical Layer). Overall, the
STM32F407VG is ideal for advanced dance pad designs aiming for high
responsiveness, complex LED patterns, or additional input features. The tradeoff is
higher cost, larger size, and slightly more power consumption.

One of STM32F0’s most common MCU chips is the STM32F072RB, which features a
48 MHz Cortex-M0 processor, 128 KB of flash memory, and 16 KB of SRAM. It includes
51 GPIO pins, 18 PWM channels, and 16 ADC channels (12-bit), making it a capable

25

and low-power choice for handling our dance pad inputs and driving RGB LEDs.
STM32F072RB supports native USB Full-Speed, and can be configured as a USB HID
device using STM32CubeMX and the HAL libraries. While it lacks advanced processing
features like DSP or FPU, its simplicity, low-cost, low power consumption, and USB
support make it a great option for our design.

One of STM32L4’s most versatile MCU chips is the STM32L476RG, which uses an 80
MHz Cortex-M4 core with both DSP and FPU support. It comes with 1 MB of flash
memory and 128 KB of SRAM, offering plenty of space for real-time processing and
buffering. The STM32L476RG provides up to 76 GPIO pins, 24 PWM channels, and 16
ADC channels (12-bit), allowing for extensive input reading and precise LED control. It
also supports native USB Full-Speed and can operate in low-power modes, making it
suitable for our design as it helps improve both performance and energy efficiency. The
main trade off is its slightly higher cost, but its extensive peripheral set and low-power
capabilities make it a strong candidate for our design.

Table 3.5 STM32 common MCU chips from different variants comparison table

Feature STM32F1 STM32F4 STM32F0 STM32L4

MCU Chip STM32F103C8 STM32F407VG STM32F407VG STM32L476RG

Structure Cortex-M3 Cortex-M4 Cortex-M0 Cortex-M4

Clock Speed 72 MHz 168 MHz 48 MHz 80 MHz

Flash
Memory

64 KB 1 MB 128 KB 1 MB

SRAM 20 KB 192 KB 16 KB 128 KB

GPIO Pins 37 82 51 76

PWM
Channels

15 ~17 timers
each ≤ 4 PWM

18 24

ADC Inputs 10 16 16 16

Native USB FS USB FS USB + HS
(w/ PHY)

FS USB FS USB

Active Power
Consumption

Moderate High Very Low Very Low

MCU Chip
Cost

~$2 ~$7-10 ~$1.50-2 ~$4-5

26

3.1.2 Dance Pad Sensor

In order for the pad to send signals to the game, we need sensors that can detect
physical input and convert it into electrical signals for the microcontroller to process.
There are four common sensor types we can consider for this project: force-sensing
resistors (FSRs), load cells, strain gauges, and piezoelectric sensors. We compare
them based on cost, accuracy, complexity, size, durability, and their ability to detect both
hold steps and taps. First, we’ll explore what each sensor is, how it works, and how it
meets the project’s engineering requirements.

3.1.2.1 Force-Sensing Resistors

Force-sensing resistors (FSRs) are sensors that change resistance in response to
applied pressure. They are commonly used in DIY and custom dance pad projects
because they are inexpensive, easy to wire, and can be constructed using accessible
materials like Velostat or copper tape. FSRs are also thin, flexible, and lightweight,
making them ideal for compact pad designs.

Though FSRs offer quick response times and simple analog interfacing (via a voltage
divider and an ADC pin), they lack precision and can show non-linear output and signal
drift over time. Poor placement or surface inconsistency can lead to dead zones or
inconsistent detection. Additionally, they are sensitive to temperature and humidity,
affecting their long-term reliability.

Overall, FSRs are a low-cost, simple, and responsive solution for detecting taps and
light pressure in dance pads, but may not be ideal for applications requiring high
durability or accuracy over time.

3.1.2.2 Load Cells

Load cells are force transducers that measure weight or applied force by detecting
mechanical deformation, typically using internal strain gauges. They output either a
millivolt signal (analog) or, in some designs, a digital signal after amplification. Load
cells are known for their high accuracy, excellent stability, and long-term durability.

Their downside lies in their higher complexity: they require a stable mechanical
mounting, precise calibration, and amplification circuitry (such as an HX711 module) to
interface with a microcontroller. Load cells also tend to be more expensive and bulky,
which may be a constraint for slim pad designs.

In summary, load cells are ideal for high-precision, arcade-grade dance pads where
accuracy and reliability are top priorities, but they involve more cost, bulk, and circuit
complexity than other options.

27

3.1.2.3 Strain Gauges (Raw)

Strain gauges are sensing elements that detect strain (deformation) in a material. This
is typically a foil or wire pattern that changes electrical resistance when stretched or
compressed. Unlike load cells, raw strain gauges don’t measure force directly, but rather
the strain on a structure, which can then be correlated to force.

When bonded carefully to structural parts of the pad, strain gauges can be very precise
and customized for specific points of interest. However, they are also extremely
sensitive to environmental noise and temperature, and they require precise installation,
bridge circuits (e.g. Wheatstone bridge), and amplification to produce usable signals.

While strain gauges can be affordable, they are technically complex, and not
ready-to-use out of the box. They are best suited for custom mechanical frames where
advanced integration is possible and where precision and internal structural feedback
are desired.

3.1.2.4 Piezoelectric Sensors

Piezoelectric sensors use the piezoelectric effect to convert mechanical stress into
electrical charge. When pressure or impact is applied, the crystal inside the sensor
generates a voltage spike. Piezo sensors are exceptional for detecting fast impacts,
such as dance pad taps, and can distinguish between light and hard hits due to their
high sensitivity and fast response.

However, they cannot detect sustained pressure or holds, as they only respond to
changes in force, not constant force. They are also prone to false triggers from
vibration, footstep echoes, or mechanical noise, and they require careful physical
isolation or dampening. On the hardware side, they are easy to wire (typically needing
just a series resistor and ADC input), though voltage spikes may require clamping
diodes to protect the MCU.

Overall, piezoelectric sensors are affordable, fast, and ideal for games focused solely
on tap detection, but they are not suitable for designs requiring hold step input or highly
stable measurements.

3.1.2.5 Break Beam Sensors

Break beam sensors are non-contact optical sensors that detect the presence or
absence of an object by interrupting a beam of infrared (IR) light between a transmitter
and a receiver. When the beam is unbroken, the sensor outputs a steady signal; when
the beam is interrupted (e.g. by a footstep), the signal changes, allowing the
microcontroller to detect an input event. Break beam sensors are very fast, have high
sensitivity, and are not affected by pressure wear, making them highly durable.

28

However, they cannot detect how hard or long the player is pressing, so they are not
capable of reading analog force or hold steps. Alignment between the emitter and
receiver must also be precise, and ambient IR sources (like sunlight or reflective
surfaces) can interfere with the sensor’s reliability. Additionally, their installation typically
requires mounting hardware and unobstructed space under or around the panel.

Overall, break beam sensors are a reliable and low-maintenance solution for detecting
quick taps or triggered events, but they lack the analog depth needed for
pressure-sensitive gameplay and cannot detect holds, making them best suited for
tap-only rhythm games or basic input triggering.

3.1.3 Monochrome vs RGB Sensor

Selecting the appropriate camera sensor for the S.T.E.P vision system was an
important decision in the beginning stages of the design process. Technically a RGB or
monochrome sensor could be used. Each sensor type has distinct advantages and
weaknesses. Monochrome sensors are known for producing high-contrast and
high-resolution images due to the absence of color filter arrays.[11] Which can improve
clarity and reduce light loss. These filters are particularly effective in applications where
edge detection, structure analysis, or low-light imaging is critical.

They also generate smaller data sizes which reduces computational load. These factors
are all very promising when considering a major goal of the system is to minimize the
computational load and processing time of the vision system. However, the pose
estimation model used in this system is MediaPipe. MediaPipe’s system is optimized for
RGB input as it relies on color information to identify and track body landmarks
accurately, using patterns in hue and saturation to distinguish between limbs and
background.[10] Since RGB sensors capture color images in a format that mirrors
human visual perception, they are best to use for AI models that interpret motion and
orientation. In the S.T.E.P system, the visual feedback is provided to the player via the
RGB LED arrays placed in the dance pads. While the motion is captured using the FSR
sensors, pose estimation relies purely on visual tracking. In this case, a monochrome
sensor would introduce ambiguity in differentiating the background from the player due
to no color differentation. With this in mind, the benefits from using a RGB sensor
outweigh those of the monochrome sensors in this application. Despite their slightly
higher data rates and lower per-pixel sensitivity. The deficiencies in image contrast or
sharpness introduced by the RGB filter array are mitigated through diligent and carefully
designed lens system and image scale optimization.

3.1.4 LED illumination Technology

For the illumination system, both white & RGB LED strips, as well as individual LEDs
were considered. Thorough research went into deciding which option would be the most
optimal for this system. While RGB LEDs would offer more visual customization, they
raise possible challenges due to their color inconsistencies and power complexity
making them less ideal for computer vision tasks. White LEDs would provide better

29

illumination with more uniform color output and higher power efficiency[9], but could
also cause discomfort to the players’ eyes. Ensuring that MediaPipe is able to
consistently perform reliable pose detection is more important than aesthetic lighting,
but player comfort is an equally important metric.

With that being said, more research went into finding an alternative that would satisfy
both the illumination and user comfort requirements. 850 nm LEDs were found to be the
most optimal choice due to their ability to illuminate the player without causing
discomfort during game play. 850nm is near-infrared and only partially visible to the
player, but it is reliably detected by the camera as illumination.[7] During the camera
selection process, it was important to find a camera that did not include an IR-cut filter
to ensure that the 850nm LEDs would be picked up on screen.

The choice between using individual IR LEDs versus LED strips was also considered
but LED strips were quickly determined to be the most optimal solution due to their ease
of integration and consistent IR output. Standard 12 V LED strips simplify power
distribution compared to the more complex constant-current drivers needed for discrete
LEDs, aligning with the system’s power efficiency goals. They are also highly practical
for testing because they can be easily modified or repositioned as needed. They allow
for better uniform and even light coverage across the dance pad area, which supports
consistent MediaPipe landmark tracking. While their only downside is having slightly
less beam-shaping flexibility, this factor is less important than cost, simplicity and
performance, which is why LED strips ultimately outperform discrete individual LEDs in
this design.

3.1.5 Embedded System Development Languages​

Our system will require software development both for the microcontroller unit (MCU)
and the rhythm game interface. In this section, we evaluate the most suitable
programming languages for each component based on criteria such as speed, ease of
development, memory control, and hardware access. The goal is to identify the best
language for programming our MCU and, if necessary, a separate language best suited
for developing the rhythm game.

3.1.5.1 C​

C is a low-level language most commonly used for programming MCUs. It provides
direct access to hardware while offering a cleaner abstraction than assembly language.
Because C compiles directly into machine code with minimal runtime overhead, it allows
extremely fast execution and real-time responsiveness, which is critical for embedded
applications like sensor reading or LED control.

Unlike high-level languages, C has no garbage collection, safety checks, or virtual
machines. Instead, the programmer is responsible for memory allocation and hardware
interfacing. While this increases development complexity, it allows precise control over
peripherals like GPIOs, ADCs, and timers. C is widely supported across virtually all

30

microcontroller platforms, including Teensy, Arduino, STM32, and ESP32. Overall, C is
not the easiest to learn, but it is the most efficient and reliable language for embedded
development.

3.1.5.2 Python

Python is a high-level, interpreted language known for its simplicity, readability, and
rapid development. While it is not suitable for low-level embedded programming (due to
memory and speed limitations), it is commonly used for PC-side applications,
prototyping, and game development, especially when paired with frameworks like
Pygame for rhythm games.

In embedded systems, Python is occasionally used on SBCs like the Raspberry Pi, but
not on MCUs like Teensy, where C or C++ are more appropriate. However, Python can
be used to simulate or visualize data from the dance pad or build a simple game
interface that responds to USB HID inputs from the MCU. Its vast ecosystem and ease
of integration with USB devices make it a strong candidate for the rhythm game
software, but not the microcontroller firmware.

3.1.5.3 Java

Java is another high-level language often used in application development, especially
for cross-platform environments. Like Python, Java is not ideal for embedded MCU
programming due to its reliance on the Java Virtual Machine (JVM), which adds
significant overhead and lacks the direct hardware access needed for real-time control.

However, Java can be used effectively for developing desktop-based rhythm games or
user interfaces that communicate with the dance pad via USB. Java’s strong support for
event-driven programming, GUI libraries (like JavaFX or Swing), and device input
handling makes it a reasonable choice if the rhythm game requires more structure or
modularity than Python might provide. Its portability and object-oriented architecture
may be overkill for simple games but could benefit larger or more scalable systems.

3.1.4 Computer Vision

3.1.4.1 History of Computer Vision
​
Computer vision (CV) is a multidisciplinary field that enables computers to interpret and
process visual information from the world, emulating the capabilities of human vision.
The field has evolved significantly over the past six decades, transitioning from basic
edge detection algorithms to modern real-time neural network-based systems used in
self-driving cars, healthcare, and interactive entertainment.

The foundations of computer vision were laid in the 1960s and 70s, when researchers
began exploring how machines could extract information from images. One of the
earliest breakthroughs came from Irwin Sobel, who in 1968 developed the Sobel
operator, a discrete differentiation filter used for edge detection in images[16]. The

31

Sobel filter works by approximating the gradient of image intensity, allowing researchers
to identify boundaries and shapes within an image. This foundational technique was
among the first attempts to compute visual structure from a flat image and is still taught
in introductory CV courses today such as CAP4453 at UCF.

Figure 3.1 Sobel edge detection filter visualizing intensity gradients in horizontal and
vertical directions

Another pivotal advancement in edge detection came in 1986 with the development of
the Canny edge detector by John F. Canny[17]. Unlike earlier filters like Sobel, which
detect edges based on intensity gradients, the Canny method applies a multi-stage
pipeline that includes Gaussian smoothing, gradient computation, non-maximum
suppression, and hysteresis thresholding. The result is a cleaner and more accurate set
of edges with reduced noise and better connectivity, making Canny detection widely
used in image preprocessing pipelines to this day.

Figure 3.2 Canny Edge detection filter pipeline demonstrated on Chess pieces

32

During the same era, researchers experimented with brightness constancy and image
segmentation, attempting to recreate how the human visual system identifies objects
based on contrast and light intensity. Early efforts were largely confined to static
grayscale images, and computing limitations of the time made real-time analysis
impossible. In the 1980s, the focus shifted to 3D reconstruction and feature extraction,
with researchers developing algorithms that could infer depth and motion from multiple
views. This included optical flow, used to estimate motion between consecutive frames
of video, and stereo vision, used to simulate binocular perception. These advancements
laid the groundwork for robotics and autonomous navigation.

The 1990s saw a surge in pattern recognition and template matching techniques.
Researchers developed systems capable of detecting basic objects, faces, and even
simple human gestures. However, these systems were often brittle, sensitive to lighting,
occlusion, and noise.

The 2000s brought significant improvements with the rise of machine learning, enabling
systems to learn visual features from labeled datasets. Techniques like Haar cascades
(used in early face detection), SIFT (Scale-Invariant Feature Transform), and HOG
(Histogram of Oriented Gradients) became standard. However, these techniques still
required manual feature engineering and were limited in complex environments.

The biggest transformation in computer vision came in the 2010s with the rise of deep
learning, particularly Convolutional Neural Networks (CNNs). Inspired by biological
visual systems, CNNs can learn hierarchical representations of images directly from raw
pixel data, eliminating the need for handcrafted features like SIFT or HOG. The
breakthrough moment arrived in 2012, when AlexNet[18], a deep CNN developed by
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, achieved a dramatic improvement
in classification accuracy during the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC).

AlexNet introduced innovations such as Rectified Linear Unit(ReLU) activation
functions, dropout for regularization, and GPU acceleration for training. Its architecture,
consisting of five convolutional layers followed by three fully connected layers,
demonstrated how neural networks could automatically learn abstract visual features
from millions of labeled images. This marked the beginning of deep learning’s
dominance in the field of computer vision, shifting the focus from algorithmic feature
engineering to data-driven learning.

33

Figure 3.3 AlexNet architecture used in the 2012 ImageNet competition utilizing
multiple convolutional layers, ReLU activations, max pooling, and fully connected layers

Since then, modern CV systems have achieved superhuman performance in tasks like
image classification, object detection, and semantic segmentation. Frameworks like
TensorFlow, PyTorch, and OpenCV have democratized access to these technologies,
making CV accessible to developers and researchers worldwide.

In the 2020s, vision models began adopting transformer architectures, first popularized
in natural language processing. Unlike CNNs, which operate on localized spatial
kernels, Vision Transformers (ViT) treat image patches as a sequence of tokens and
model global context through self-attention mechanisms. This shift enables long-range
spatial dependencies and outperforms traditional CNNs on large datasets when given
sufficient compute. ViT and similar architectures are at the cutting edge of current
research in CV, offering new ways to represent and interpret visual data. While still
resource-intensive, they are beginning to influence real-time applications in gesture
recognition and pose estimation, potentially useful for future iterations of our rhythm
game.

Today, computer vision has become a core enabler of innovation and a cornerstone of
industries including healthcare for things like cancer screening, automotive industries for
self-driving cars and blindspot detection, security industries for various facial recognition
techniques, and even gaming industries for motion capturing. As processing power
continues to increase and datasets grow richer, the accuracy, speed, and complexity of
CV systems are expected to improve even further, bringing us closer to systems that
can truly see and understand our world.

34

3.1.4.2 History of Computer Vision in Games
​
Computer vision (CV) technologies have seen increasing integration into modern
games, from facial detection and hand tracking to body motion recognition. These
advancements have allowed developers to create more immersive and interactive
gaming experiences by enabling players to interact with virtual worlds using natural
body movements rather than traditional input devices. However, this fusion of CV and
gameplay has a long history of experimentation, ranging from novel successes to
forgettable gimmicks.

Early attempts to incorporate computer vision in gaming can be traced back to the Sony
EyeToy, a webcam-based input device for the PlayStation 2, released in 2003. The
EyeToy captured the player’s image and motion using basic background subtraction and
motion segmentation to enable interaction with on-screen elements. Games like
EyeToy: Play and Kung-Fu Live utilized this setup to allow players to punch objects or
perform gestures in rhythm games. However, the lack of robust depth sensing or pose
tracking limited the fidelity and complexity of interactions, often making the experience
frustrating or imprecise.

The Microsoft Kinect, released in 2010 for the Xbox 360, represented a major leap
forward. Utilizing an infrared depth sensor and RGB camera, the Kinect could track
full-body skeletons in real-time using a technique called skeleton tracking, which
mapped 20 joints of the player’s body. This enabled games like Kinect Adventures and
Dance Central to support full-body gameplay without the need for controllers. The
Kinect SDK and the associated machine learning models enabled gesture detection and
activity recognition, expanding the use of CV beyond entertainment into healthcare,
education, and robotics. However, challenges such as latency, lighting interference, and
limited tracking accuracy in multi-person scenes persisted.

While the Kinect was not utilizing conventional Computer Vision techniques and opted
for IR sensing, it was able to prove very effective for the time allowing less powerful
hardware like the xbox to perform simple calculations. By analyzing distortions in an
infrared dot pattern, Kinect could calculate depth and track motion without any physical
markers.

To make skeletal tracking accessible to developers, Microsoft released the Kinect SDK,
enabling applications to extract joint data and recognize poses. A foundational feature
of this SDK was its ability to detect up to 20 distinct skeletal joints, as visualized in
Figure 3.3.2.A. These include major points such as the head, spine, hips, shoulders,
and limbs. This allowed developers to build gesture-based interfaces, games, and
virtual assistants capable of interpreting full-body movement.

35

Figure 3.4 Joint layout used by Microsoft Kinect's skeletal tracking system

Kinect’s architecture proved revolutionary for its time. The use of the various hardware
shown in Figure 3.3.2.B such as the IR Emitter, Color Sensor, IR Depth Sensor, and Tilt
Motor allowed the Kinect to capture accurate per-pixel values along with depth
measurements even in low light shown in 3.3.2.C. These technologies were critical in
early gesture-based games like Dance Central and inspired later research in
human-computer interaction.

Figure 3.5 Kinect Architecture

36

Figure 3.6 3D Depth Image in Grayscale

Microsoft also provided developer tools like Kinect Studio, which recorded and replayed
interaction data to aid debugging and testing. Applications could be built rapidly in WPF
using templates like KinectSeletonApplication which visualized tracked joints as ellipses
on a canvas. The Kinect SDK also introduced features like seated mode, facial tracking,
and support for close-range users via Near mode, allowing for more flexibility in design.

Kinect's legacy lives on in modern computer vision applications. Its model of joint-based
tracking and use of multimodal input (pose + voice) laid the groundwork for today’s
AI-powered body tracking with neural networks and webcams. While contemporary
systems like MediaPipe Pose and OpenPose no longer require specialized hardware,
the principles they followed, pth estimation, joint modeling, and user-centric design,
remain deeply rooted in Kinect's innovations.

Another notable application of CV in gaming is Just Dance, a franchise by Ubisoft
launched in 2009. Originally designed for the Nintendo Wii using motion controllers,
newer iterations supported Kinect and PlayStation Camera input. Just Dance evaluates
player movements by comparing their captured silhouette or skeleton data to
pre-recorded dance routines. While this system simplifies feedback into generalized
“good” or “perfect” scores, it creates an accessible experience that emphasizes fun over
precision. This trade-off reflects a key challenge in CV-based gameplay: achieving a
balance between technical accuracy and player enjoyment.

In recent years, computer vision has enabled augmented reality (AR) games such as
Pokémon GO, which use smartphone cameras and visual SLAM (simultaneous
localization and mapping) to blend virtual content with the real world. Although AR relies
more heavily on scene understanding than pose detection, these games showcase how
CV can extend interactivity beyond fixed hardware setups.

37

More recently, open-source tools like MediaPipe and OpenPose have democratized
access to pose estimation algorithms that were once exclusive to large tech companies.
With these libraries, developers can extract real-time body, hand, and facial landmarks
using only a standard webcam. This has fueled a resurgence in indie games and
research projects that explore motion-based gameplay and accessibility.

Commercial arcade rhythm games have also adopted modern CV technologies. Games
such as Dance Around, developed by Konami, utilize 3D cameras and real-time pose
tracking to recognize full-body movements and footwork with greater precision.
Similarly, Chunithm, a rhythm game by Sega, relies on advanced hand-tracking through
infrared or camera-based systems to detect fast, complex gestures like air slashes or
upward swipes. While not all the technical details of these proprietary systems are
public, they demonstrate how CV, including neural network-based recognition and 3D
hand pose estimation, has become viable even in high-speed arcade settings.

In the context of our rhythm game, the evolution of CV in games informs both the
possibilities and limitations of the technology. While early systems like EyeToy and
Kinect paved the way for body-based interaction, modern pose estimation frameworks
enable a more flexible and accessible approach without requiring specialized hardware.
Understanding this history allows us to design a system that is both innovative and
grounded in proven interaction paradigms.

3.1.4.3 Pose Estimation Techniques

3.1.4.3.1 Classical Techniques

Before the widespread adoption of deep learning, pose estimation was achieved
through traditional computer vision methods, many of which relied on handcrafted
features and rule-based pipelines. These classical techniques were computationally
efficient and suitable for the hardware available at the time, but they came with strict
environmental limitations and a lack of generalization across diverse scenes.

One of the earliest and most intuitive techniques used in classical pose estimation was
background subtraction. This method attempts to isolate the moving subject from a
static background by identifying changes in color or brightness between frames.
Typically, a “background model” is captured or assumed, and then each new frame is
compared pixel-by-pixel to detect motion. Basic versions used simple frame
differencing, while more advanced versions employed Gaussian Mixture Models
(GMMs) to handle subtle lighting fluctuations or gradual background changes. In a
constrained environment this method could effectively identify silhouettes or regions of
interest, forming the basis for further analysis like gesture recognition or contour
tracking. However, background subtraction quickly broke down in real-world scenarios.
Environmental noise such as flickering lights, moving shadows, or dynamic
backgrounds like waving trees introduced errors. Furthermore, it required the camera to
be stationary, as even slight camera movement could disrupt the entire model. While it
was a useful tool for early motion tracking experiments, its fragility under real conditions
made it impractical for generalized use, especially in games or public environments.

38

Figure 3.7 Example of Background Subtraction with OpenCV

Another classical technique that provided more temporal insight into motion was optical
flow. Instead of comparing single frames against a background, optical flow analyzes
the apparent movement of pixels between consecutive frames to estimate motion
vectors. This technique is especially useful for capturing the direction and velocity of
motion, making it ideal for analyzing limb movements or detecting walking and waving
gestures. The two primary approaches being dense flow and sparse flow offered
different trade-offs between resolution and performance. Optical flow has been used in
robotics and video analysis to infer actions from continuous motion, and in some early
gesture-controlled systems. However, it came with its own set of limitations. Large or
fast movements often led to errors due to motion blur or discontinuities, and occlusion,
when one part of the body hides another, posed a major challenge. Moreover, flow
estimation becomes ambiguous in areas with uniform texture or lighting, where pixel
intensity doesn't change enough to provide directional clues. In the context of
multi-person scenes or complex poses, optical flow was insufficient on its own, often
requiring additional heuristics or model-based constraints to be effective.

Contour detection and shape matching techniques sought to extract body outlines by
identifying edges and fitting known templates or convex hulls. These methods enabled
rough body pose estimation but failed in the presence of overlapping limbs, varied
clothing, or non-standard postures. Similarly, pose-from-silhouette techniques relied on
the shape of a segmented figure to infer likely joint locations, using statistical models of
human anatomy. These systems performed reasonably well for frontal or side views but
were limited by the inherent ambiguity of silhouettes in 2D projections.

Among classical methods, pictorial structures marked a significant conceptual shift by
introducing a more structured way to represent human pose. Rather than analyzing
motion or edges in isolation, they use a computer science graph-like representation
where nodes correspond to body joints and edges represent limbs. Each part was
associated with a probability distribution describing its likely appearance, and the spatial
relationships between parts were encoded through geometric constraints. The system

39

would then search for the configuration that maximized the overall likelihood across the
image, essentially solving an optimization problem to infer the most plausible pose. This
approach was robust to some extent against partial occlusion and varying camera
angles, making it more suitable than silhouette or contour-based methods for
challenging environments. However, it came at a cost. The inference step was
computationally expensive, especially for full-body models with many degrees of
freedom. These systems also relied heavily on strong contrast and clean segmentation
to reliably detect features in the first place. As a result, while pictorial structures
provided a powerful theoretical foundation for understanding pose, their practical use
was limited until more efficient algorithms and stronger feature representations emerged
in the deep learning era.

Figure 3.8 Graph representation of a typical pose for a human body

A major step forward came with the introduction of the Microsoft Kinect in 2010, which
helped bridge the gap between classical vision pipelines and modern learning-based
systems. The Kinect utilized structured infrared light to capture depth data in addition to
standard RGB imaging. This enabled accurate 3D skeletal tracking without requiring
wearable sensors or markers. Microsoft’s implementation used machine learning
decision forests trained to identify joint positions from depth images, allowing for
real-time, multi-user tracking on modest consumer hardware such as the Xbox 360.
Though highly influential, Kinect’s depth-based approach suffered from hardware
limitations, including limited range, sunlight interference, and platform dependency.

Despite their constraints, these classical techniques laid the groundwork for the
learning-based methods that followed. They demonstrated the feasibility of markerless
tracking and inspired early applications in gaming, gesture control, and
human-computer interaction. The lessons learned from these systems informed the
design of modern neural network architectures and dataset collection strategies used in
today's pose estimation models.

40

3.1.4.2 Modern Techniques

As hardware improved and large annotated datasets became available, convolutional
neural networks (CNNs) emerged as the dominant paradigm for pose estimation. These
models replaced handcrafted pipelines with data-driven learning, enabling greater
robustness, scalability, and accuracy.

The emergence of CNNs has drastically transformed the field of human pose
estimation, enabling high-accuracy, real-time detection of key body joints from standard
RGB imagery. Unlike classical techniques that relied on handcrafted features or
background modeling, modern CNN-based systems can generalize to a wide variety of
poses, environments, and occlusion conditions through extensive training on large-scale
annotated datasets.

One of the most influential convolutional neural network-based pose estimation
frameworks is OpenPose[19], developed by the Carnegie Mellon Perceptual Computing
Lab. OpenPose was the first open-source system capable of performing real-time,
multi-person 2D pose estimation with relatively high accuracy. It uses a method called
Part Affinity Fields, which predicts not only the positions of individual body key points
such as wrists, elbows, and knees, but also the directional associations between these
keypoints. This allows the system to effectively group detected joints into separate
individuals, even when multiple people are present in the same scene or overlapping in
view.

While OpenPose set a major milestone in pose estimation research, its accuracy comes
with significant computational demands. It typically requires a dedicated GPU in order to
achieve real-time performance, and its performance degrades considerably on devices
without powerful hardware. As a result, OpenPose is not well-suited for mobile,
embedded, or browser-based environments where memory, power, and processing
capabilities are limited. The framework is built on Caffe and makes extensive use of
OpenCV for tasks such as image preprocessing, rendering keypoints, drawing skeletal
lines, and managing post processing routines. This design makes it modular and
relatively easy to modify, but also heavy and resource-intensive compared to more
modern, lightweight alternatives.

In practice, many of the tasks handled by OpenPose’s post processing pipeline can be
re-implemented with simpler code using OpenCV and basic geometric rules. For
example, drawing connections between keypoints based on distance thresholds or
grouping joints into a rough pose can be achieved using a few lines of logic, especially
when used in combination with another library like MediaPipe to handle keypoint
detection. This makes OpenPose seem unnecessarily complex for applications that only
require basic gesture detection, such as identifying if someone is raising their hands,
jumping, or standing still.

41

Figure 3.9 OpenPose working on a large amount of subjects

In contrast to OpenPose, MediaPipe[21] Pose was developed by Google with an
emphasis on speed, efficiency, and platform flexibility. It was designed to operate on
low-powered devices without sacrificing too much accuracy. The system uses a
two-stage convolutional neural network pipeline. First, it detects the region of interest
around a person using a lightweight detector. Then, it applies a landmark model to
predict thirty-three key points across the entire body, including finer details such as
fingers, feet, and facial landmarks.

What sets MediaPipe Pose apart is its ability to deliver real-time performance even on
CPUs and embedded systems. It runs reliably on mobile phones, Raspberry Pi boards,
and NVIDIA Jetson devices without the need for a dedicated GPU. Its modular
architecture is built around a graph-based processing model, where each component in
the pipeline is represented as a node. This allows developers to customize, replace, or
extend parts of the pipeline, such as input normalization, inference logic, or output
smoothing.

In addition to its lightweight design, MediaPipe includes smoothing filters and motion
tracking features that reduce jitter and increase temporal stability. This makes it
especially suitable for applications involving fast movements or inconsistent lighting.
Although it may not match OpenPose in multi-person detection or sub-pixel keypoint
accuracy, its practical balance between speed, resource usage, and flexibility makes it
an ideal choice for mobile games, real-time interaction, and low-latency gesture
recognition.

42

OpenPose remains a powerful benchmark in academic and industrial settings where
multi-person detection, fine-grained keypoint accuracy, and research flexibility are
prioritized over efficiency. Its ability to consistently detect multiple overlapping subjects
and produce detailed skeletons makes it valuable for high-end applications such as
motion capture, live broadcasting, and scientific analysis. However, its reliance on GPU
acceleration, heavy memory footprint, and large model size make it impractical for use
in resource-constrained environments, such as mobile games or embedded systems.
MediaPipe Pose offers a more balanced solution by maintaining reasonably high
accuracy while optimizing for speed, modularity, and ease of deployment. Its ability to
operate smoothly on CPU-based systems allows developers to use it in real-time
applications where latency must be minimized and where external hardware
acceleration is not feasible. Furthermore, its graph-based architecture and wide platform
support (including Android, iOS, and desktop) enable developers to prototype and
iterate across a broad range of devices with minimal changes to the underlying
codebase.

Figure 3.10 Example prototyping of OpenCV and MediaPipe on Christopher Solanilla

For scenarios demanding ultra-fast performance and even lighter computational
demands, BlazePose[20] takes this optimization a step further. Its use of single-shot
detection eliminates the need for separate region proposals or sequential processing
steps, significantly reducing latency. Combined with model quantization and neural
architecture search, BlazePose achieves performance that exceeds 30 frames per
second on modern smartphones using only CPU resources. This makes it highly
suitable for applications in fitness tracking, augmented reality (AR), and gesture-based
interfaces where responsiveness and battery efficiency are critical. Additionally, its
prediction of 33 keypoints, including subtle facial and foot positions, enables more
expressive pose understanding despite its lightweight design. The most intriguing

43

feature of BlazePose is that it is able to predict within a high accuracy x, y, and z
coordinates for problems that may require 3D location.

In the context of our rhythm-based game, where low latency, reliable body tracking, and
smooth animations are essential for gameplay responsiveness, both MediaPipe Pose
and BlazePose represent ideal choices. Given that the game must run on commodity
hardware without access to high-end GPUs, the selection of a lightweight model is not
only a technical preference but a hard requirement. MediaPipe’s modular pipeline offers
a flexible starting point for tuning the pipeline to match the rhythm game’s input
structure and timing constraints, while BlazePose introduces an opportunity to push
performance boundaries even further if frame rate becomes a bottleneck. These models
align well with the constraints of real-time play and allow us to maintain a consistent
experience across platforms, from desktops to embedded consoles.

Figure 3.11 BlazePose demonstrating high performant pose tracking capabilities with 3
dimensions

3.1.4.4 Prototyping with MediaPipe and OpenCV

To better understand the practical limitations and advantages of MediaPipe Pose, early
prototyping work was conducted prior to this project using a custom-built C++
application developed for a separate accessibility-focused project. This project, titled
Body Language Detector, was created as part of a hackathon hosted by my workplace.
Its goal was to explore the use of computer vision in assisting visually impaired users by
interpreting body language in real time. The application used a webcam feed to identify
and analyze nonverbal cues, such as hand gestures and body posture, and translate
these visual signals into auditory or textual feedback. The project aimed to give blind or

44

low-vision users more access to subtle social signals that are typically communicated
without speech.

To meet the performance requirements of real-time interaction, the application was
developed in C++ and used GTK for the graphical interface. This allowed for a native,
low-overhead UI that could display pose information and system feedback without
introducing latency. OpenCV was used to handle image processing and visualization
tasks, while MediaPipe Pose provided the backbone for keypoint detection. Rather than
relying on Python, which would have simplified development but introduced
performance overhead, the entire pipeline was compiled using Bazel to ensure smooth
operation on Linux systems. Particular care was taken to support CPU-only inference,
making the program compatible with resource-constrained environments such as
embedded systems or older computers. The system was tested on a Gentoo-based
Linux setup, demonstrating stable performance and reliable keypoint detection without
the need for external GPU acceleration.

As seen in Figure 3.9, the prototype successfully tracked the user’s full-body pose using
a standard webcam. Landmarks such as the shoulders, elbows, knees, and wrists were
recognized in real time, and gesture logic was applied by calculating the relative
distances and angles between these points. For example, the application could detect
whether a person had raised both arms, crossed their arms, or shifted their weight to
one side. These features allowed for basic pose classification and helped shape an
understanding of what kinds of gestures could be reliably detected with lightweight pose
estimation frameworks. The experience of building gesture classifiers using simple
geometric heuristics informed the rhythm game’s input design, where fast, unambiguous
pose recognition is essential for gameplay accuracy and responsiveness.

The project is available on a public GitHub repository and includes build instructions,
MediaPipe submodules, and example code for evaluating gestures using OpenCV and
landmark data. Although the original purpose of the tool was to improve accessibility for
users with vision impairments, the prototyping process provided valuable insights into
the deployment of real-time pose estimation systems on constrained hardware.
Specifically, it helped highlight the trade-offs between model complexity and
responsiveness, and demonstrated the effectiveness of MediaPipe's filters and tracking
logic in noisy or unpredictable environments. These lessons directly informed the
technical direction of the project. Both offer reliable, low-latency pose estimation that is
well-suited for interactive applications running on systems without high-end graphics
hardware.

3.1.4.5 Considerations for Embedded Systems

For this project, integrating computer vision into a rhythm game requires careful
consideration of the limitations imposed by potential embedded platforms such as the
Nvidia Jetson While the Jetson Nano offers a relatively capable computing platform with
integrated GPU acceleration via its 128-core Maxwell GPU, it does not match the
capabilities of desktop-class hardware. Therefore, key decisions surrounding model

45

architecture, inference optimization, runtime configuration, and thermal design must be
made in order to maintain a responsive and stable user experience.

3.1.4.5.1 Hardware Capabilities of the Jetson Nano

The NVIDIA Jetson Nano serves as a compact and cost-effective embedded computing
platform aimed at enabling edge AI applications. It is built around a quad-core ARM
Cortex-A57 CPU operating at up to 1.43 GHz, paired with a 128-core Maxwell GPU
capable of executing parallel computations required by deep learning inference. The
board is equipped with 4 GB of LPDDR4 memory, which is shared between the CPU
and GPU, making memory contention a critical factor in system performance. This
unified memory architecture reduces the overhead of copying data between processors
but also introduces constraints when both the vision pipeline and the game engine are
competing for memory bandwidth and capacity.

Despite its modest specifications compared to desktop-class GPUs or higher-tier Jetson
modules such as the TX2 or Xavier NX, the Nano is capable of running real-time
inference workloads when models are properly optimized. However, it cannot support
large-scale convolutional neural networks without suffering from memory exhaustion,
cache contention, or reduced throughput. Pose estimation systems that rely on deep
neural networks, particularly those involving multiple stacked layers or high-resolution
heatmaps, can quickly push the Jetson Nano to its limits. OpenPose, for example,
typically requires over 2 GB of RAM just for model inference at full resolution, and relies
on multi-branch processing stages to estimate keypoints and limb associations. These
demands make it infeasible to deploy OpenPose in its standard form without significant
pruning, quantization, and architectural simplification. Even in highly constrained
configurations, OpenPose achieves only 3 to 5 frames per second on the Jetson Nano,
rendering it unsuitable for real-time interactive use in latency-sensitive applications like
rhythm games.

In contrast, lightweight alternatives such as MediaPipe's BlazePose or Pose models are
specifically designed to operate under embedded constraints. MediaPipe relies on a
streamlined architecture that detects a single person per frame using a detector-tracker
approach, typically involving an initial region-of-interest (ROI) proposal followed by a
landmark regression stage. These stages are implemented as modular nodes within a
dataflow graph that can be reconfigured or pruned depending on the use case. By
reducing input resolution, disabling optional filters, and leveraging fixed-point arithmetic,
the MediaPipe pipeline can be tuned to achieve 15 to 25 frames per second on the
Jetson Nano, even when running alongside other processes such as camera capture
and basic game logic.

Furthermore, the Jetson Nano’s GPU can accelerate some portions of the pipeline
through CUDA, though MediaPipe does not natively integrate with NVIDIA TensorRT,
which limits the ability to fully offload inference from the CPU unless custom GPU
kernels are developed. Nevertheless, the combination of a streamlined pose estimation

46

model, configurable processing graph, and low-memory footprint makes MediaPipe a
viable candidate for real-time single-user gesture recognition on this hardware platform.

3.1.4.5.2 Software Stack and Runtime Optimization

Computer vision applications on the Jetson Nano are typically developed using the
NVIDIA JetPack SDK, which includes CUDA for GPU computation, cuDNN for deep
learning operations, and TensorRT for inference optimization. While these tools are
powerful, they are not directly compatible with every pose estimation framework.
MediaPipe, for example, is not natively integrated with TensorRT and instead relies
primarily on CPU inference or custom GPU pipelines. This can restrict its ability to fully
leverage the Nano's GPU unless a custom build is created and compiled specifically for
Jetson’s architecture. In contrast, OpenPose requires significant manual configuration to
function on the Jetson Nano. This includes aligning CUDA versions, recompiling
OpenCV with GPU support, and configuring swap space to avoid out-of-memory
crashes. These dependencies and the resulting fragility of the system make OpenPose
impractical for a rhythm game targeting consistent frame rates and predictable behavior.

MediaPipe provides a more stable and lightweight alternative. It offers precompiled
binaries for both Python and C++ that support CPU inference, and its modular
graph-based processing structure allows developers to disable optional components to
reduce resource consumption. When paired with inference backends such as
TensorFlow Lite or the ONNX Runtime, MediaPipe can run efficiently on the Jetson
Nano with minimal adjustments. The flexibility of this architecture is particularly
advantageous when attempting to tailor the pose detection pipeline to balance latency,
precision, and power usage.

3.1.4.5.3 Thermal and Power Management Constraints

In embedded systems development, particularly those involving computer vision
workloads, power consumption and heat generation become critical engineering
concerns that must be addressed early in the design process. The NVIDIA Jetson Nano
provides two selectable power modes: a default 5-watt mode and a more
performance-oriented 10-watt mode, which requires a barrel-jack power supply for
stable operation. While enabling the higher power mode improves the responsiveness
of both neural network inference and general system tasks, it also introduces higher
thermal output, which can become problematic in the absence of sufficient cooling
mechanisms. Continuous execution of convolutional neural network models, such as
those used for pose estimation, alongside a concurrently running rhythm game engine,
places sustained computational stress on the device, increasing the risk of thermal
throttling if the system exceeds its safe temperature thresholds.

To mitigate thermal buildup and avoid performance degradation over time, the Jetson
Nano requires active cooling solutions such as compact fans or aluminum heatsinks.
Even with such additions, software design must complement the hardware limitations by

47

adopting strategies that minimize unnecessary computational overhead. For instance,
reducing the frequency of camera frame polling or selectively enabling vision processing
only during gameplay segments that require it can dramatically lower heat output. The
rhythm game being developed does not rely on continuous full-body pose monitoring at
all times; instead, it only requires pose classification during specific gameplay prompts
that challenge the player to perform a particular movement. This creates an opportunity
to disable or suspend the pose estimation system during periods when it is not in use,
thereby reducing CPU and GPU workload and allowing the device to operate in a
lower-power state for the majority of gameplay.

Such an approach aligns well with the real-time demands of rhythm games, where pose
detection can be activated just prior to a prompt and then evaluated in a short time
window before being deactivated again. This intermittent activation pattern not only
supports power savings but also simplifies thermal management, since the vision
pipeline is no longer running continuously in the background. Moreover, additional
efficiency can be gained by limiting the input resolution of the camera, lowering the
target frame rate for pose estimation to around 15 frames per second, or batching
non-time-critical processing tasks so they execute during quieter moments of gameplay.
These strategies allow for more predictable thermal behavior and reduce the likelihood
of the device reaching critical temperatures that trigger throttling or system instability

3.1.4.5.4 Game Engine Integration and Resource Synchronization

The rhythm game is being developed using the Godot Engine, which introduces
additional integration considerations. Godot allows for C++ extensions through
GDExtension or GDNative, making it possible to incorporate MediaPipe's C++ API
directly into the game. However, careful synchronization between the engine and the
pose estimation system is critical. Since both the game and the pose detector may
require access to OpenGL contexts or video memory, concurrent usage can result in
resource contention or graphical glitches if not managed properly. To avoid such
conflicts, pose estimation should be executed in a dedicated thread or separate
process. Pose data can then be shared with the game engine using inter-process
communication or memory-mapped files, ensuring that Godot can operate smoothly
without interruptions caused by the vision pipeline.

This architectural decoupling also helps to minimize the impact of intermittent
performance drops in the vision system. Since pose detection and gameplay operate
semi-independently, short delays in processing frames do not immediately disrupt game
logic. Instead, previously detected poses can be held until the next update cycle,
maintaining consistency for gameplay elements that rely on accurate gesture input.

3.1.4.5.5 Memory Footprint and Latency Targets

The Jetson Nano’s 4 GB of RAM must support the operating system, the game engine,
camera buffering, model inference, and other runtime operations. MediaPipe’s pose
detection typically consumes between 100 and 200 megabytes of memory, depending
on image resolution and whether smoothing filters are enabled. Additional RAM is used

48

by the video capture pipeline, graphical assets, and internal Godot processes. Without
proper profiling, it is easy to overcommit memory and cause performance to degrade
unpredictably.

For rhythm-based gameplay, responsiveness is crucial. The full pipeline from camera
input to pose interpretation and game response should ideally remain under 150
milliseconds of latency. Delays beyond this threshold can disrupt the timing-sensitive
nature of rhythm gameplay and break player immersion. Achieving this target requires
efficient memory management, parallelization of processing stages, and reduction of
unnecessary overhead in both vision and game logic subsystems.

3.1.4.5.6 Summary and Design Tradeoffs

Based on the platform analysis, MediaPipe remains the most viable pose estimation
solution for the NVIDIA Jetson Nano. It balances performance, configurability, and
platform compatibility in a way that suits the needs of embedded game development.
While OpenPose offers more detailed multi-person tracking, its memory requirements
and complex setup disqualify it from practical use in this environment. BlazePose, as an
extension of the MediaPipe ecosystem, provides an additional fallback option in cases
where even greater inference speed is necessary or if resource usage exceeds
acceptable thresholds. By carefully managing resource allocation, thermal conditions,
and runtime behavior, it is possible to build a responsive and reliable rhythm game
experience that leverages pose estimation on embedded hardware without sacrificing
performance.

3.1.4.6 Programming Languages for Game and Computer Vision

The selection of programming languages for this project plays a central role in shaping
both the development workflow and the real-time performance of the computer vision
and game engine components. Given the nature of embedded systems and the
integration of computer vision models for pose detection, careful language choices must
be made that reflect both the technical demands of the system and the development
constraints faced by the team.

For the computer vision subsystem, both C/C++ and Python are widely adopted in the
field and are supported by key libraries such as OpenCV and MediaPipe. Python offers
a fast and accessible prototyping experience due to its dynamic typing, extensive library
ecosystem, and concise syntax. MediaPipe, in particular, provides precompiled Python
wheels that allow for rapid experimentation and integration with OpenCV, making it an
ideal language for early-stage development and algorithm testing. However, Python’s
interpreted nature and higher runtime overhead make it less suitable for
performance-critical or resource-constrained deployments, especially on embedded
hardware like the Jetson Nano.

In contrast, C/C++ offers significant advantages in terms of execution speed, memory
control, and portability, particularly for embedded and production environments.
MediaPipe’s core is written in C++ using the Bazel build system, which provides high

49

performance but also introduces greater complexity during compilation and integration.
The C/C++ API grants lower-level access to graph construction, buffer management,
and custom kernel development, enabling developers to fine-tune pipelines for optimal
performance. However, setting up a MediaPipe C/C++ environment on Linux, especially
for cross-compilation or GPU acceleration, can be challenging and may require in-depth
knowledge of build systems and dependency management.

Given the tradeoffs between flexibility and performance, many projects begin with
Python for rapid prototyping before transitioning to C++ for deployment. However, due
to prior experience working with MediaPipe, OpenCV, and embedded C++
development, we are able to bypass the initial Python prototyping phase and move
directly into a C++ implementation. This decision allows us to focus our efforts on
building a production-ready system from the outset while maintaining the performance
and low-level control necessary for real-time computer vision on the Jetson Nano.
Although Python remains a powerful tool for testing and experimentation, our familiarity
with the C++ development pipeline enables faster integration, better performance
tuning, and more efficient use of system resources.

The rhythm game itself is being developed in the Godot Engine, which uses GDScript, a
high-level, dynamically typed language with Python-like syntax, designed specifically for
Godot’s architecture. While GDScript is expressive and well-integrated with Godot’s
node system, it does not offer the low-level performance or external library compatibility
needed for high-throughput computer vision. Therefore, GDScript will be used primarily
for game logic and UI, while pose estimation will be handled externally in C/C++ and
communicated to the game engine via inter-process communication (IPC) or shared
memory. If deeper integration becomes necessary, Godot supports C/C++ bindings
through GDExtension, enabling MediaPipe’s C/C++ modules to interface directly with
the engine while maintaining real-time performance.

3.1.4.7 Evaluation Criteria

The computer vision system in this rhythm-based dance game serves as an
event-driven input mechanism rather than a continuously running subsystem. Its role is
to detect specific player poses at designated moments defined by the game’s chart or
music track. While it is not active at all times, it remains an essential component during
gameplay segments that involve pose-based challenges. To function effectively in this
context, the system must meet key requirements in terms of latency, accuracy,
robustness, and integration. These criteria ensure the pose detection system can
reliably support time-sensitive interactions without introducing disruptions to the player’s
experience.

3.1.4.7.1 Latency

Timing is one of the most important aspects of rhythm game design. For players to feel
connected to the beat and confident in their inputs, the delay between a physical
gesture and the system’s recognition of that gesture must be imperceptible. For this
application, the maximum allowable end-to-end latency is defined as 100 milliseconds.

50

This measurement begins at the moment the camera captures a frame and ends when
the pose data is successfully delivered to the game engine for evaluation.

This latency budget includes image acquisition, any pre-processing applied to the
frame, neural network inference for pose detection, post-processing steps like keypoint
filtering or pose smoothing, and the transfer of results into the game logic. Delays
beyond 100 milliseconds can create a noticeable disconnect between the player’s
actions and the game’s response. At 150 milliseconds, players with strong rhythm
sensitivity may perceive the system as being off-tempo or unresponsive.

To minimize latency, the pose detection pipeline must use lightweight models such as
BlazePose or a stripped-down version of MediaPipe Pose. Frame resolutions should be
kept moderate, and smoothing filters should be configured for minimal delay. Where
possible, inference should be performed asynchronously on a separate thread.
Hardware acceleration through CUDA or TensorRT, if compatible, can further reduce
inference time and help maintain a consistent frame rate.

3.1.4.7.2 Accuracy

Accurate pose recognition is required to ensure the system scores player input fairly
and consistently. Errors in classification, including false positives where poses are
detected incorrectly or false negatives where valid poses are missed, directly impact
gameplay quality. Incorrect detections can result in dropped combos, missed prompts,
or undeserved penalties, reducing player satisfaction and overall trust in the game.

To address this, the pose estimation system should be configured to detect only a small
set of predefined poses used in gameplay. These can be manually defined or trained
using a dataset that includes common variations. Confidence thresholds should be
enforced to prevent low-quality predictions from being processed. Temporal validation,
where poses must be held across multiple frames to register, can help eliminate
flickering caused by brief or unstable detections.

In scenarios where transfer learning is feasible, the pose detector can be fine-tuned
using a small number of labeled examples that reflect the specific movement patterns
and player behaviors expected in the game. This improves classification accuracy
without the need to retrain an entire model from scratch.

3.1.4.7.3 Robustness

The game is expected to operate in a range of real-world conditions, meaning the vision
system must be resilient to variability in lighting, background clutter, clothing, and
camera positioning. Environments may include bedrooms, living rooms, classrooms, or
arcades, each introducing different visual challenges.

Lighting changes can introduce shadows or glare. Players may wear loose, patterned,
or dark clothing that affects keypoint visibility. Camera placement may vary slightly in
height, distance, or tilt. To maintain stability across these conditions, the pose estimation
system must be robust. Models that are invariant to scale and orientation, particularly

51

those using heat maps or landmark regression, perform better in uncontrolled
environments.

Testing should include augmenting the input video stream with artificial noise,
brightness variation, and occlusion to evaluate the system's tolerance. Ideally, the pose
detector should not require frequent recalibration and should support dynamic input
normalization during runtime.

3.1.4.7.4 Integration with the game engine

In a rhythm-based game where player gestures are a core part of gameplay, the
computer vision system must integrate cleanly with the game engine to avoid
introducing delays, instability, or data inconsistency. The pose detection pipeline should
operate in parallel with the main game loop, allowing the game engine to remain
responsive and frame-accurate even under high processing load.

A practical approach is to run the vision system in a dedicated thread or as a separate
process. This design reduces the likelihood of memory contention and helps isolate
crashes or slowdowns in the vision pipeline from the rest of the game. Data such as
keypoint coordinates, joint angles, or classified pose states can be communicated
through shared memory buffers, local sockets, or lightweight message-passing
protocols.

The interface between the vision module and the game logic should be structured and
minimal. Pose data should arrive in a predictable format with consistent timing to allow
the game engine to make real-time decisions, such as triggering animations, updating
score counters, or initiating visual effects. Synchronization mechanisms such as frame
counters, time stamps, or event queues can help ensure that pose detections are
correctly matched to the corresponding frames of gameplay. When evaluating different
CV pipelines, attention should be paid to their ability to support such integration models.
Systems that allow for modular runtime graphs, asynchronous processing, and efficient
memory management are typically better suited for integration in real-time game
environments.

3.1.5 Game Engines

3.1.5.1 Godot

Godot is a very useful game engine that is beginner friendly, is open source, and has a
lot of documentation as to how to use each function available in Godot. Furthermore
due to Godot being open source, there are a lot of third party tutorials and walkthroughs
regarding Godot teaching and guiding users how to accomplish various tasks for
different types of games. These tutorials include rhythm games which is what we will be
working on.

Godot’s game engine seems very easy to not only install, but also use once it has
already been installed. Godot’s ability to create various scenes, that of which hold a

52

variety of assets such as sprites, nodes, sound, animations and other useful assets
seamlessly make it very simple to use. Godot’s user interface also is very simple to
understand as one does not become overwhelmed.

Godot also has its own scripting language called GDScript, which is very similar to
Python which is used to be able to change various aspects of each object being made.
Due to Godot’s scripting language being based off of python, GDScript is a comfortable
language to understand especially for game scripting beginners who don't have a lot of
programming experience, specifically users without prior game design programming
knowledge. Through using GDScript, there are various functionalities that can be done
using it such as changing the positioning of an object or sprite across the y-axis or
x-axis which we will be using for the notes that will follow the beat. Another attribute that
can be changed using GDScript, are the colors of the objects after a certain button(s)
is/are pressed which we will be also using for the color changes of the arrows when
they are pressed.

Another fantastic feature that Godot has, is the compatibility mode that is used when
creating our project. Due to us having a microcontroller that will not have as much
computing power as a modern computer would have, having this as a feature will lower
the load that the microcontroller would need to output.

We also have a member who has used Godot in the past and due to their experience
with Godot we had this option as a priority, however we checked other sources as well
to test which would be best for the objective we are trying to complete.

In the end of checking which would be our best option to completing our objective, we
decided that Godot would be our game engine of choice for this specific project.

Figure 3.12 Godot default interface

53

Godot’s interface is very simple to understand. The nodes that will be on a specific
scene is located on the top left side where the scene tab is, the assets that are
implemented throughout the entire project will be located right below that in the file
system tab, and when clicking on a specific node, their properties will be located on the
right side in the inspector tab.

Scene Tab
The scene tab is located by default on the top left of the Godot’s user interface. The
scene tab hosts all of the different nodes that are located on the specific scene that is
selected. These nodes that can be added to the scene could range from different
sprites, to different types of polygons some of which can add collision detection, and
even audio files that can be played while the scene is being played. Afterwards, once all
the different nodes are placed on the scene selected, one could add a script onto each
of those individual nodes that allows modifications to the objects.

These modifications could range from the color of the polygon, the position of the sprite,
or even a custom property that one chooses to add to the object. Another way that
script can be attached, is by attaching them to one of the scenes as a whole. Doing so
will affect any and all objects that are inside the scene. This feature makes it easier to
modify a scene as a whole rather than individually modifying each object that exists in
the scene and makes the process seamless.The scene tab is very useful to keep one
organized as to what is going on in the scene and be able to see where everything is
positioned.

Figure 3.13 Scene Tab

54

File System Tab

The file system holds all of the assets that are needed for the project. This includes any
scripts that are being run, any scenes that are made, any sprites that are imported, and
much more.

The file system tab also allows for the creation of various folders for better organization
for the project. Having multiple assets be bunched up makes working on it confusing,
however utilizing the file system the folders make it easier to search for a specific group
of assets such as one for how an arrow functions or searching for how the menu
interface is set up, makes it seamless to update certain assets when needed.

Figure 3.14 FileSystem Tab

55

Inspector Tab
The inspector tab holds all the information in regards to a certain object that is being
highlighted. Whether that be an imported sprite, a custom made polygon that has the
collision feature attached to it, or even an audio source that needs to play music, the
inspector tab will have that information stored for users to be able to make modifications
manually to certain attributes.

For example, users can decide that they would like to change the positioning of a
certain sprite or polygon, under the transform dropdown one could access the various
transformations that one could make such as moving across the x-axis or move across
the y-axis. Users can also decide that they would like to rotate an object a certain way,
this can also be done in the transform section.

There are many other attributes that users can add to the object selected through the
inspector tab such as scripts that were mentioned before.

Figure 3.15 Inspector Tab

56

3.1.5.2 Unity

Unity is another game engine that exists that could be used to make 2D games. Unity
however is more focused on 3D games rather than 2D games. Some features such as
the Tilemap system, the SpriteShape, and pixel-perfect rendering exist that could help
us create our 2D rhythm game that we are trying to accomplish.

Unity also offers audio synchronization tools and a timeline that could make it easier to
have both the player actions along with the musical beats to be in tune, which is a key
factor in terms of how the game should function while it is running.

The downside of using Unity, is that for scripting, it uses a language called C# which is a
quite advanced language to use and isn't a very beginner friendly scripting language for
game building. Even though it is a very powerful language to learn, its learning curve is
very high without prior experience using the language.

Furthermore, due to how large unity is in terms of their features, it becomes very
overwhelming understanding what unity has in store vs what it does not have in store.
After opening it for the first time, Unity has a variety of libraries that come installed with
it causing the engine to take a long time to open for the first time.

One good attribute that Unity has, is the built in version control called Unity Version
Control. While it is a good feature to have, due to us being a group of 5 people, it would
cost us an additional $14 monthly to use their built in system.

Figure 3.16 Unity default interface

57

3.1.5.3 Unreal Engine

Unreal Engine is a game engine that one can install using the Epic Games launcher
created by Epic Games themselves that is mainly used for 3D games. They are mostly
known for being used for AAA game development which are games that are very large
with many assets attached to the game mostly made in the 3D space. However, Unreal
Engine has added the capabilities to create 2D games through their “Paper 2D”
functionality allowing to only see the space in the 2D perspective rather than adding the
Z-direction. This functionality allows 2D sprites to be made and other 2D assets that
could be used for a 2D game being developed on their game engine.

One of the downsides to using Unreal Engine however, is that although it has tutorials
on how to create games, all of the ones that they offer on their website are mostly
geared towards those who are aiming to create a 3D game. Since we are making a 2D
game, those tutorials do not work for us entirely. There are however some aspects of
those tutorials that we could use such as their scripting of sprites and event handling.
Unreal Engine also has the same problem that Unity does which is the load that it has
on the system.

3.1.6 Version Control

3.1.6.1 Github

Github is a very popular version control manager that allows multiple people to work on
a project at a given time. By using their Git Repositories, users can access all of their
uploaded documents through their cloud service. This allows for users to work on one
computer, upload any and all documents or files they need for their project, and be able
to work on another computer and retrieve all the documents they need to continue
working. Furthermore, since Github is indeed a version control manager, it is able to
retrieve past versions of projects in the case that a mistake was made that caused the
entire project as a whole to crash. This allows restoring the project to a previous state
that it was in. However one must be careful when doing so as if not done so properly
could be detrimental causing hours if not days of progress to be lost.

Another useful feature that github has is its ability to work on separate branches than
the main one being used. What these branches allow one to do is work on a specific
portion of the project separately using the same main project source code and make
modifications without modifying the main source code. This is extremely useful for us
due to the separate portions that we will be working on and not wanting to make
mistakes that others would have to fix later on. To add on to the branch, users can also
merge projects together, allowing for branches that one worked on to be combined with
the main project code and be updated. This allows for example one person to make

58

changes to the main project code based on one feature, and once done, the user is able
to merge with the main code that others have access to as well. One must be very
careful with merging as there is a possibility of overrides that can cause projects to
crash, so one must be sure that the merging procedure is done correctly so that
mistakes do not appear at a later time.

For our project we will be using Github mainly for the game design portion as we will
have 2 people working on it simultaneously.

3.2 Part Selection

3.2.1 MCU

After comparing a wide range of microcontroller options, the Teensy 4.1 is the most
optimal choice for our dance pad system. It outperforms other MCUs like Arduino
boards (Uno, Mega, Leonardo), Raspberry Pi Pico, ESP32 variants, and even most
STM32 chips in the areas that matter most to our design: real-time responsiveness,
native USB HID support, memory size, and I/O capacity.

Unlike Arduinos, which are easy to use but limited in speed (16 MHz) and memory,
Teensy 4.1 runs at 600 MHz with a powerful ARM Cortex-M7, giving us extremely low
latency, which is critical for rhythm game input timing. Compared to ESP32 boards,
which offer Wi-Fi/Bluetooth and good general performance, Teensy 4.1 has faster USB
communication (480 Mbps) and far better real-time determinism. While the Raspberry Pi
Pico is extremely affordable, it lacks native USB HID and has fewer ADC inputs,
requiring extra circuitry. Even STM32 boards, while flexible and powerful, generally
require more setup and may not match Teensy 4.1’s combination of ease of use, speed,
and built-in USB HID support.

With 55 GPIO pins, 35 PWM outputs, 18 ADC inputs, 8 MB of flash, and 1 MB of
SRAM, Teensy 4.1 comfortably supports our 9 dance pad panels, RGB LEDs, LED
panel, and signal processing without needing extra expanders. Although its processing
power may be more than necessary, this overhead ensures room for future scalability
(e.g. two-player pads, more lighting effects).

Overall, Teensy 4.1 provides the best performance-to-complexity ratio, meeting our
real-time, I/O, and USB communication needs while remaining compact, efficient, and
development-friendly.

3.2.2 Dance Pad Sensor

Upon analyzing all contending sensors for our project, the most optimal choice is clearly
the force-sensing resistor (FSR). FSRs are the most commonly used sensors in both
DIY dance pad builds and even in many modern arcade dance machines. They are
affordable and reliable components that offer fast response times, are simple to wire

59

(usually requiring just a voltage divider circuit), and can detect both types of inputs
required by our system: quick impacts and sustained press-and-hold steps.

Their flexibility and thin profile also make them ideal for fitting under lightweight or
low-profile panel designs. As long as our physical construction ensures proper
placement and force distribution, we can effectively minimize their main drawbacks:
potential dead zones, non-linearity, and slightly lower accuracy compared to load cells
or strain gauges. Another major advantage of FSRs is cost. Being relatively
inexpensive, they allow for cost-effective replacements if damaged during testing or
extended use, keeping long-term maintenance costs low. This aligns with our project's
goals of affordability and maintainability.

FSRs can be easily wired and pair well with Teensy 4.1. Much like Teensy 4.1, the
FSR’s simplicity contributes to lower system complexity, enabling us to focus more on
refining input responsiveness, game logic, and RGB LED feedback. Overall, FSRs offer
the best balance of performance, simplicity, and cost for our dance pad sensor needs.

Table 3.5 shows features of the four mentioned types of sensors and how they compare
to one another
(Legend: ↑↑ = very high; ↑ = high; M = moderate; ↓ = moderate/low; ↓↓ = very low)

Feature FSRs Load Cells Strain Gauges

(Raw)
Piezoelectric
Sensors

Break Beam
Sensors

Size ↓↓ ↑ ↓↓ ↓ M

Cost ↓↓ ↑ ↓ ↓ ↓

Response
Time

↑ ↑ ↑ ↑↑ (impact) ↑↑

Accuracy ↓ ↑↑ ↑↑ ↑ (impact) ↓

Complexity ↓↓ ↑ ↑↑ M ↓

Durability ↓ ↑↑ M ↓ ↑

Impact Input ✓ ✓ ✓ ✓ ✓

Sustain Input ✓ ✓ ✓

3.2.3 Camera Comparison

Several camera modules were considered to balance resolution, frame rate, and price.
The chosen camera needed a pixel pitch suitable for resolving ~ 1mm features, a frame
rate of at least 30 FPS for smooth gameplay, a cost preferably under $100 to fit system

60

goals, and compatibility with the 850nm illumination. The Arducam AR0234 USB 2MP
global shutter camera was identified as a strong candidate. Its 3.0 µm pixel pitch, RGB
output, and use of no IR-cut filter makes it ideal to properly sense the NIR illumination.
The global shutter also significantly reduces motion blur, which is important during fast
player movement.[29]

Through more research, a lower-cost alternative using the same AR0234 sensor was
found through SVPRO. The SVPRO 2MP Global SHutter USB camera module offers
similar specifications, including global shutter operation, M12 lens compatibility, and
RGB output, but for a better price. Its lower cost makes it more ideal for the prototype
phase. However, it may have reduced support and documentation compared to the
Arducam-branded product. The Raspberry Pi HQ camera was also considered because
of its modular CS-mount compatibility, but its rolling shutter and low frame rate made it
less suitable for pose estimation. Overall, the AR0234 offers a balanced trade-off
between pixel size, cost, and motion capture. The specifications for these candidate
cameras are summarized in Table 3.2.3

Table 3.6 Camera comparison table

Camera Pixel Pitch(µm) Frame

Rate(FPS)
Price (USD) Shutter Type

Raspberry Pi
HQ (IMX477)

1.55 20 $53.78 Rolling

Arducam
AR0234 Global
Shutter

3.0 60 $109.99 Global

SVPRO
AR0234 Global
Shutter

3.0 60 $76.99 Global

3.2.4 Lens Comparison

A wide field of view and short focal length were prioritized to capture the entire 114’’ x
114’ dance pad area from approximately 1.8m away. Research into wide-angle M12
lenses focussed on models with a horizontal field of view near 93°, focal lengths around
3 mm, minimal distortion, and a price under or as close to $100 as possible.[12] These
lenses are well-suited for compact vision systems, and the M12 mount allows easy
replacement and adjustment during prototype testing.

Although the SVPRO AR0234 camera module includes pre-installed wide-angle M12
lens, alternative 3 mm M12 aspherical lenses will be evaluated to verify critical
requirements such as distortion, IR transmission, and image sharpness for the 850 nm
active illumination. This ensures the final lens selection supports consistent MediaPipe

61

landmark detection and meets the project’s performance targets. Commercially
available aspherical M12 lenses with focal lengths around 3 mm were identified as the
best balance of wide-angle coverage and low distortion. Aspherical designs help reduce
spherical aberration and maintain sharpness across the entire field of view, which is
important for MediaPipe pose tracking and consistent landmark detection.[12] Although
a fully custom-designed aspherical lens could in theory optimize every optical
parameter, the cost and fabrication complexity made that impractical for thai prototype.
Therefore, an off the shelf aspherical wide-angle M12 lens will be the baseline option.

After evaluating multiple M12-mount spherical lenses compatible with the sensor, the
Commonlands CIL329 was the most appropriate. This lens has a 2.8 mm focal length
with a132° diagonal field of view, approximately 100 - 110° HFOV on the AR0234.
Although the CIL 329’s specified image circle is slightly undersized for the AR0234
sensor’s diagonal, a quick compatibility check indicates it should still provide sufficient
coverage for this prototype. This field of view allows the camera to capture the full 114’’
x 114’’ dance pad area from a working distance of 1.8m without excessive mounting
height or tilt. Its aspherical design supports reduced geometric distortion, which is
beneficial for MediaPipe tracking, while remaining compatible with typical project
constraints on cost and mechanical mounting. Two additional lenses were also
evaluated for comparison and their specifications are summarized in table 3.7. Both
lenses provided compatible focal lengths and apertures but did not have the horizontal
field of view needed.

Table 3.7 Lens options and their specifications

Lens Focal

Length(mm)
Horizontal FOV
(°)

Aperture (f/#) Price (USD)

Commonlands
CIL034

3.2 ~75 2.4 $39

Commonlands
CIL329

2.8 ~120 2.4 $39

Commonlands
036

3.3 ~75 2.2 $19

3.2.5 LED Part Comparison

The main selection criteria for these strips was their ability to provide sufficient radiant
flux to support reliable MediaPipe detection, a wide beam angle near 120°for consistent
coverage, and moderate power consumption to fit within the available 12 V supply
constraints. Three candidates were compared and their specifications were summarized
in Table 3.8. The Waveform IRFlex 850nm, DC12/24V 5050 SMD strip, and the 360
Digital signature 3528 SMD strip. The 5050 SMD option provides both high output and a
moderate price point for 60 LEDs per meter and a power draw of approximately 14.4

62

W/m. 3528 SMD offers lower power consumption but has a higher price per reel making
it less ideal. The 2835 SMD strip provides the most LED density at 120 LED/m and has
the lowest power draw of about 9.6W/m, making it the most premium candidate of the
three at $55 per 5m.

All three options maintain a wide beam angle near 120°, supporting robust coverage of
the player’s body during movement. Based on these tradeoffs such as cost and power,
the 3528 SMD strip was selected as the baseline for initial prototyping. This is due to its
cost balance, radiant power, and easy 12 V integration with time-multiplexed control
zones. Final LED strip selection will be confirmed after prototype testing of illumination
uniformity and camera sensitivity.

Table 3.8 LED Strip comparison table

Feature Waveform IRFlex

850nm
DC12/24V 360 Digital Signage

LED Type 2835 SMD 5050 SMD 3528 SMD

Beam Angle 120 120 120

LED Density (/m) 120 60 60

Power(W/m) 9.6 14.4 7.2

Price ($) $55 $28.98 $45.89

3.2.6 Embedded System Development Languages

We are using C language to program our Teensy 4.1 microcontroller because it offers
the most efficient, direct, and low-overhead way to interact with the hardware
components of our system, specifically the FSRs, RGB LEDs, and USB HID interface. C
provides precise control over memory, peripherals, and timing, which is crucial for our
real-time step detection and LED response requirements. Unlike higher-level
languages, C allows us to write low-latency code that can directly manipulate GPIO
pins, read analog signals from FSRs via ADC channels, and update LED states with
minimal delay.

Teensy 4.1 supports C (and C++) natively through the Arduino IDE and Teensyduino
extension, allowing us to easily configure the board for USB HID communication, which
is essential for translating foot inputs into instant keyboard-like signals recognized by
the game. Since our system is latency-sensitive and must respond with near-instant
feedback for both impact and press-and-hold inputs, using C gives us the deterministic
performance we need. Overall, C is the most appropriate language for programming the

63

embedded side of our dance pad system, offering speed, reliability, and full access to
the hardware’s capabilities.

3.2.7 Computer Vision Library Selection

After evaluating several options for implementing pose detection and real-time
vision-based input, we have selected MediaPipe and OpenCV as the primary libraries
for our computer vision subsystem. This decision reflects both technical capabilities and
our prior development experience.

MediaPipe, developed by Google, offers a lightweight and efficient pose estimation
pipeline that can run on commodity hardware, including embedded systems such as the
Jetson Nano. It supports real-time inference with acceptable latency, making it suitable
for our rhythm game's timing-sensitive requirements. MediaPipe provides prebuilt
models such as BlazePose, which can detect and track 33 body landmarks with a
balance of accuracy and speed. Its modular graph-based architecture allows
customization of the processing pipeline, enabling us to skip unused stages and
fine-tune performance parameters as needed.

OpenCV complements MediaPipe by offering a wide range of image processing utilities,
camera input handling, and matrix operations that are useful for gesture classification
and data smoothing. It also provides tools for visualization, geometric transformations,
and real-time filtering, all of which are valuable during debugging and refinement of the
pose recognition system.

Our previous work with these libraries in related projects, such as a pose-driven
accessibility tool, has shown that they are reliable, portable, and efficient when compiled
natively in C++ using Bazel. By combining MediaPipe’s pose estimation models with
OpenCV’s low-level processing capabilities, we avoid the need to train models from
scratch and instead benefit from a well-supported and mature ecosystem.

4. Standards and Design Constraints

Standard: IPC-2221A – Generic Standard on Printed Board Design

The IPC-2221A, "Generic Standard on Printed Board Design," serves as the
foundational standard for the design of printed circuit boards (PCBs). Published by IPC,
the global electronics industry association, this document establishes the generic
requirements for the design of organic printed boards, from single-sided boards to
complex multilayer structures. It provides a robust framework of rules and principles that
govern nearly every aspect of PCB layout, ensuring that the final product is not only
functional and reliable but also manufacturable. For any electronic design project,
applying the principles of IPC-2221A is a critical step in translating a schematic diagram
into a physically sound and dependable product.

64

Core Philosophy: Design for Manufacturability (DFM)

At its core, IPC-2221A is a guide for Design for Manufacturability (DFM). It creates a
common language and a set of baseline requirements between the designer and the
fabrication house. By establishing rules for spacing, feature sizes, and tolerances, the
standard ensures that a design can be reliably produced using standard manufacturing
processes, which helps to control costs, improve yields, and reduce production time.
The standard also defines three performance classes based on the intended end-use
environment, which dictates the stringency of the design rules:

●​ Class 1 (General Electronic Products): For applications where the primary
requirement is the function of the completed assembly.

●​ Class 2 (Dedicated Service Electronic Products): For products requiring
high reliability and an extended service life, where uninterrupted service is
desired but not critical. This is the target class for the dance pad project.

●​ Class 3 (High Performance/Harsh Environment Electronic Products): For
mission-critical products where continued high performance or
performance-on-demand is essential.

Electrical Design Considerations

IPC-2221A provides extensive guidance on the electrical aspects of PCB design to
ensure both signal integrity and user safety.

●​ Conductor Spacing (Clearance): One of the most critical safety
considerations in PCB design is the spacing between conductive elements.
Insufficient spacing can lead to dielectric breakdown (arcing) between traces,
especially at higher voltages. IPC-2221A provides detailed tables (such as
Table 6-1) that specify the minimum required clearance based on the peak
DC or AC voltage between conductors. These requirements vary based on
whether the conductors are on internal or external layers and whether they
are coated. For the dance pad, which operates at a low voltage (5V), the
minimum spacing requirements are easily met, but acknowledging this
standard is crucial for demonstrating sound design practice.

●​ Conductor Sizing for Current Capacity: The width and thickness of a PCB
trace determine its current-carrying capacity. A trace that is too small for the
current it must carry will overheat due to its own resistance, which can
damage the PCB laminate or cause the trace to fail entirely. IPC-2221A
provides charts and formulas that relate a conductor's cross-sectional area to
its temperature rise for a given amount of current. This allows designers to
select an appropriate trace width to ensure the board operates within safe

65

thermal limits. For the power and ground traces on the dance pad's PCB,
these guidelines were used to ensure they could handle the total current draw
of the system without significant heating.

Mechanical and Physical Design Rules

Beyond electrical rules, IPC-2221A specifies the physical and mechanical
characteristics of the board to ensure its structural integrity and compatibility with
assembly processes.

●​ Holes and Interconnections (Vias): Vias are plated-through holes that form
electrical connections between different layers of a PCB. Their reliability is
paramount to the function of a multilayer board. IPC-2221A provides specific
guidelines for via design, including:

○​ Annular Ring: The annular ring is the ring of copper that surrounds a
drilled hole. The standard specifies a minimum acceptable annular ring
width to ensure a solid connection between the via barrel and the trace
after drilling and plating, accounting for manufacturing tolerances. For
Class 2 designs, a robust annular ring is required to prevent breakout,
where the drill hole is not completely surrounded by the copper pad.

○​ Aspect Ratio: This is the ratio of the board's thickness to the diameter
of the drilled hole. A high aspect ratio can make it difficult to achieve
reliable copper plating down the entire barrel of the via. The standard
provides limits on aspect ratios to ensure manufacturability.

●​ Thermal Management: The standard addresses the need to manage heat
generated by components. A common technique guided by IPC-2221A is the
use of thermal relief pads. When a component pin needs to connect to a
large copper plane (like a ground plane), a direct connection would act as a
large heat sink, making it very difficult to solder the component. A thermal
relief pad creates small copper spokes to make the connection, which
reduces the heat transfer during soldering while still providing an adequate
electrical connection.

Documentation Requirements

A critical function of the IPC-2221A standard is to define the requirements for a
complete and unambiguous documentation package. A design is only as good as the
documentation that communicates it to the manufacturer. The standard calls for a set of
documents that typically includes:

66

●​ Fabrication Drawing: A detailed drawing that specifies the board's
dimensions, layer stack-up, materials, drill hole information, and any special
manufacturing notes.

●​ Assembly Drawing: Shows the location and orientation of all components on
the board.

●​ Gerber Files: The industry-standard file format that describes each layer of
the PCB (copper layers, solder mask, silkscreen, etc.).

●​ Bill of Materials (BOM): A complete list of all components to be mounted on
the board.

By following the documentation guidelines of IPC-2221A, the design intent for the dance
pad's electronics is clearly and professionally conveyed, minimizing the risk of
manufacturing errors.

Sources

●​ IPC International, Inc. "IPC-2221A: Generic Standard on Printed Board
Design." May 2003.

●​ Coombs, Clyde F. Printed Circuits Handbook. 6th ed., McGraw-Hill, 2008.
●​ "IPC-2221 Standards in PCB Design." Sierra Circuits, Inc.

Standard: Universal Serial Bus (USB)

The Universal Serial Bus (USB) is a ubiquitous industry standard that establishes
specifications for cables, connectors, and communication protocols for connection,
communication, and power supply between computers and peripheral devices. Its
development was intended to standardize the connection of computer peripherals,
thereby replacing a multitude of legacy interfaces. For this project, adherence to the
USB standard is critical for ensuring interoperability and a seamless user experience.

USB 2.0 Specification

While several revisions of the USB standard exist, the USB 2.0 specification was
selected for this project due to its widespread compatibility and sufficient data
throughput for the required application. USB 2.0 provides a maximum data signaling
rate of 480 Mbit/s (High Speed), which is more than adequate for transmitting the state
changes of the dance pad's nine input tiles. Furthermore, the standard specifies a bus
power supply of 5V, with a high-power device permitted to draw a maximum of 500mA,
a critical constraint for the system's power budget.

67

USB Human Interface Device (HID) Class

A key component of the USB specification relevant to this project is the Human
Interface Device (HID) class. The HID class is a device class specification that defines
a protocol for low-latency, low-power peripherals, such as keyboards, mice, and game
controllers. The primary advantage of utilizing the HID class is that it obviates the need
for custom host-side drivers, as support is natively integrated into modern operating
systems, including Windows, macOS, and Linux.

Device functionality is communicated to the host computer through a series of
descriptors during the enumeration process:

●​ Device Descriptors: Identify the peripheral with a unique Vendor ID (VID)
and Product ID (PID).

●​ HID Descriptors: Specify that the device conforms to the HID class.
●​ Report Descriptors: This is the most critical descriptor for this project. It

defines the structure and format of the data packets, known as reports, that
the device will send to the host. For the dance pad, the report descriptor will
be configured to define a data structure containing the boolean state of each
of the nine input tiles, effectively representing them as buttons.

Once enumerated, the device transmits data to the host via Input Reports over a
dedicated interrupt-based endpoint, ensuring that state changes (i.e., tile presses and
releases) are communicated with minimal latency.

Sources

●​ USB Implementers Forum (USB-IF). "Device Class Definition for Human
Interface Devices (HID)." Version 1.11, 27 June 2001. https://www.usb.org/hid

●​ USB Implementers Forum (USB-IF). "Universal Serial Bus Specification."
Revision 2.0, 27 April 2000.

Standard: FCC Part 15 – Unintentional Radiators
The Federal Communications Commission (FCC) establishes regulations to manage
electromagnetic interference under Title 47, Part 15 of the Code of Federal
Regulations. This standard governs the operation of radio frequency (RF) devices
without requiring an individual license. Any electronic device incorporating digital logic
and operating with clock frequencies greater than 9 kHz is capable of generating
electromagnetic energy. While not its primary purpose, this energy can radiate from the
device and cause interference with radio communications. Such devices are classified
by the FCC as unintentional radiators.

68

https://www.usb.org/hid

Device Classification: Class B

FCC Part 15 defines two primary classifications for unintentional radiators based on the
intended market and environment:

●​ Class A: For devices used in commercial, industrial, or business
environments. The limits on radiated and conducted emissions are less
restrictive.

●​ Class B: For devices intended for use in residential environments. The
emissions limits are significantly more stringent to prevent interference with
consumer electronics such as televisions, radios, and Wi-Fi networks.

Given that the 9-tile dance pad is a consumer-oriented gaming peripheral, it falls under
the Class B classification. Therefore, the design must consider stricter emission limits
applicable to residential devices.

Design for Compliance and EMI Mitigation

While formal FCC certification is beyond the scope of this academic project,
incorporating design principles aimed at minimizing electromagnetic interference (EMI)
is a fundamental aspect of professional engineering practice. The following strategies
have been considered in the design of the device's printed circuit board (PCB) and
overall system architecture:

●​ PCB Ground Plane: The PCB is designed with a large, contiguous ground
plane. This provides a low impedance return path for digital signals, which
minimizes the area of current loops that can act as efficient radiating
antennas.

●​ Decoupling Capacitors: Small ceramic capacitors are placed physically
close to the power and ground pins of the microcontroller and other integrated
circuits. These capacitors serve as a local charge reservoir and shunt
high-frequency noise from the power distribution network to the ground plane,
preventing its propagation.

●​ Signal Integrity: The slew rates of high-speed digital signals are controlled
where possible. Sharper signal transitions contain higher-frequency harmonic
content, which can contribute to radiated emissions.

●​ Cable Shielding: A shielded USB cable will be specified for connecting the
device to the host computer. The shield helps to contain common-mode noise
generated by the device's circuitry and prevents the cable from acting as an
antenna.

By implementing these EMI mitigation techniques, the design proactively addresses the
requirements of FCC Part 15, ensuring the device operates as a responsible and
non-interfering electronic product.

69

Sources

●​ United States, Code of Federal Regulations, Title 47, Part 15. "Radio
Frequency Devices."

●​ Federal Communications Commission. "OET Bulletin 62: Understanding the
FCC Regulations for Low-Power, Non-Licensed Transmitters." October 1993.

Standard: UL 62368-1 – Hazard-Based Safety for ICT & AV Equipment

The UL 62368-1 standard represents a modern, hazard-based approach to product
safety for Information and Communication Technology (ICT) and Audio/Video (AV)
equipment. Published by Underwriters Laboratories (UL), this standard shifts from a
traditional incident-based model to a proactive, performance-based methodology
focused on identifying potential hazards and implementing safeguards to mitigate them.
As the dance pad is an electronic peripheral that directly interfaces with both a host
computer and a human user, ensuring its safety in accordance with established
principles like those in UL 62368-1 is a primary design objective.

Hazard-Based Safety Engineering (HBSE) Principles

UL 62368-1 is built on the principles of Hazard-Based Safety Engineering (HBSE),
which involves a three-step process:

1.​ Identify Energy Sources: Pinpoint all potential energy sources within the
product.

2.​ Classify Energy Levels: Categorize the energy sources based on their
potential to cause pain or injury to a user or damage to the equipment.

3.​ Implement Safeguards: Apply appropriate safeguards to protect users from
any energy sources classified as hazardous.

For the dance pad project, the primary energy sources are electrical and mechanical.

Application and Design Safeguards

While this academic project will not undergo formal UL certification, the design
philosophy of UL 62368-1 has been integrated into the development process to ensure
user safety.

●​ Electrical Hazard Mitigation: The device is powered exclusively by a 5V DC
source via a standard USB 2.0 port, which is classified as an ES1 (Electrical
Energy Source Class 1) environment under UL 62368-1. This low voltage is
not considered hazardous and does not present a risk of electric shock. To
protect against potential short circuits or overcurrent conditions, the custom
printed circuit board (PCB) design incorporates a resettable Polymeric
Positive Temperature Coefficient (PPTC) fuse. This device automatically

70

interrupts the circuit in an overcurrent event and resets when the fault is
cleared, providing robust protection against fire hazards. All internal wiring is
appropriately insulated and secured to prevent abrasion or pinching.

●​ Mechanical Hazard Mitigation: The dance pad is subjected to significant
and repeated mechanical stress during gameplay. The enclosure is
constructed from high-impact polycarbonate and plywood; materials selected
for durability and resistance to fracture. All external corners and edges of the
enclosure are rounded to a radius of no less than 3mm to prevent cuts or
injuries from sharp edges. The internal structure is designed to distribute
impact forces, ensuring the assembly remains mechanically sound and that
no internal components can become dislodged and create a secondary
hazard.

By adopting the hazard-based principles of UL 62368-1, the design of the dance pad
prioritizes user safety, addressing potential electrical and mechanical risks through
deliberate material selection and the implementation of appropriate safeguards.

Sources

●​ UL Standards. "UL 62368-1: Audio/video, information and communication
technology equipment - Part 1: Safety requirements." UL.com.

●​ UL Standards. "Hazard-Based Safety Engineering (HBSE) & UL 62368-1."
UL.com.

Standard: RoHS – Restriction of Hazardous Substances
The Restriction of Hazardous Substances (RoHS) Directive, originating in the
European Union, is a critical environmental and health-focused standard for the
electronics industry. The directive (specifically RoHS 3, Directive 2015/863/EU) restricts
the use of ten specific hazardous materials in the manufacture of various types of
electrical and electronic equipment. Although this project is not intended for commercial
sale in the EU, voluntary adherence to RoHS principles represents responsible
engineering practice, minimizing environmental impact and ensuring the final product is
safe for users and for disposal.

Restricted Substances

The RoHS directive restricts the following substances to a maximum concentration of
0.1% by weight (1000 ppm), apart from Cadmium, which is limited to 0.01% (100 ppm):

●​ Lead (Pb)
●​ Mercury (Hg)
●​ Cadmium (Cd)
●​ Hexavalent Chromium (Cr⁶⁺)

71

●​ Polybrominated Biphenyls (PBB)
●​ Polybrominated Diphenyl Ethers (PBDE)
●​ Four specific Phthalates (DEHP, BBP, DBP, DIBP)

Implementation in Project Design and Assembly

A conscious effort was made throughout the procurement and assembly phases to
ensure the components and materials used in the dance pad are RoHS compliant.

●​ Component Procurement: All active and passive electronic components,
including the microcontroller, resistors, capacitors, connectors, and diodes,
were sourced from reputable distributors. During selection, components were
explicitly filtered and verified to be "RoHS Compliant" based on
manufacturer's datasheets. This ensures that the fundamental building blocks
of electronics are free from restricted hazardous substances.

●​ Printed Circuit Board (PCB) Fabrication: The custom PCBs for the project
were manufactured by a fabrication house that offers a RoHS-compliant
manufacturing process. This guarantees that the PCB substrate, solder mask,
and surface finish (e.g., ENIG - Electroless Nickel Immersion Gold, or
lead-free HASL - Hot Air Solder Leveling) do not contain restricted materials.

●​ Soldering and Assembly: The most significant step taken to ensure RoHS
compliance during in-house assembly was the exclusive use of lead-free
solder. Instead of traditional tin-lead (SnPb) solder, a tin-silver-copper
(Sn-Ag-Cu, or SAC) alloy was used for all soldering tasks. While lead-free
solder requires higher working temperatures and presents different wetting
characteristics, its use eliminates the most common hazardous substance
found in electronics assembly, protecting both the assembler and the
environment.

By adhering to the RoHS directive, this project demonstrates a commitment to modern,
environmentally conscious design standards that extend beyond immediate functional
requirements.

Sources

●​ European Commission. "Restriction of the use of certain hazardous
substances in electrical and electronic equipment (RoHS)."

●​ "RoHS Guide." Mouser Electronics.

Standard: IPC-A-610 – Acceptability of Electronic Assemblies
The IPC-A-610, "Acceptability of Electronic Assemblies," is the most widely
recognized global standard for the workmanship and quality of printed circuit board
assemblies (PCAs). Developed by the Association Connecting Electronics Industries
(IPC), this standard provides comprehensive, visually supported criteria for evaluating

72

the quality of electronic assemblies. Adhering to the principles outlined in IPC-A-610 is
essential for ensuring the long-term reliability and functionality of the dance pad custom
electronics. A failure in a solder joint or a misplaced component could lead to
intermittent or total failure of the device during use.

Workmanship Classification

IPC-A-610 defines three classes of product quality, reflecting the intended life cycle and
operational environment of the assembly:

●​ Class 1 (General Electronic Products): For products where the primary
requirement is the function of the completed assembly.

●​ Class 2 (Dedicated Service Electronic Products): For products requiring
extended reliability and continued performance. Uninterrupted service is
desired but not critical.

●​ Class 3 (High Performance/Harsh Environment Electronic Products): For
products where continued high performance or performance-on-demand is
critical.

For this project, Class 2 was established as the target quality standard. As a game
controller subject to physical impact and repeated use, a high degree of reliability is
necessary to ensure a consistent user experience.

Application of IPC-A-610 Criteria

The criteria of IPC-A-610 were applied during the hand-assembly and inspection
phases of the custom electronics.

●​ Soldering Quality: All solder joints were created with the goal of meeting
Class 2 acceptability criteria. This includes ensuring proper wetting on both
the component lead and the PCB pad (with a contact angle of less than 90°),
forming a concave solder fillet, and avoiding common defects such as cold
joints, disturbed joints, excess solder, or solder bridging between adjacent
pads.

●​ Component Placement: Meticulous care was taken during component
placement to ensure correct orientation for polarized components, such as
diodes and electrolytic capacitors. All components were placed centrally on
their respective land patterns on the PCB before soldering, as specified by
the standard.

●​ Post-Assembly Inspection and Cleaning: Following assembly, each board
underwent a thorough visual inspection using magnification and proper
lighting. This inspection verified that solder joints were acceptable and that no
foreign object debris (FOD), such as stray wire clippings or solder balls, was
present on the board. Furthermore, the boards were cleaned with isopropyl

73

alcohol to remove flux residue, which can be corrosive over time and can lead
to electrical leakage paths, in alignment with IPC standards for post-assembly
cleanliness.

By targeting IPC-A-610 Class 2 workmanship, the project ensures that the assembled
electronics are not only functional but also robust and reliable, capable of withstanding
the demands of their intended application.

Sources

●​ IPC International, Inc. "IPC-A-610H: Acceptability of Electronic Assemblies."
●​ "Understanding IPC-A-610." EMSG Inc.

4.1.1 IEC 62471 - Photobiological Safety

When designing the LED panels, it was important to verify whether the system adhered
to relevent photobiological safety standards. IEC 62471 is an internationally
recognized framework standard that defines safety evaluation criteria for optical
radiation, including visible, ultraviolet, and infrared sources. The purpose of this
standard is to ensure systems protect human eyes and skin from photobiological
hazards associated with artificial light sources, such as LEDs. IEC 62471 classifies
systems into risk groups based on their radiometric output and potential health
hazards, ranging from Exempt (RG0) to Risk Group 3 (high risk). [14].

For S.T.E.P, 850 nm infrared LED strips are being used to provide active illumination for
pose detection. Since 850nm is near-infrared and partially outside of the visible range,
it is still covered by IEC 62471, which encompasses wavelengths between 200 nm and
3000 nm.[] The LEDs being used are placed approximately 1.8 meters from players.
According to industry summaries of IEC 62471, systems using 850nm LEDs typically
fall within Risk Group 1 provided their radiant exposure stays below the established
safety thresholds. [14]

Although minimizing the radiant flux is recommended to comply with IEC 62471, in this
project the actual risk is very minimal. The 850nm LEDs are partially visible, mostly
safe, and extremely common in consumer motion-tracking systems. The player distance
of 1.8meters, combined with time-multiplexing and wide distribution of LEDs, means
that the design itself is very low risk and well within Risk Group 1. No hazardous
exposure conditions are expected.

4.1.2 ISO 9241-210 - Ergonomics of human-system interaction

Another important standard was ISO 9241-210. ISO 9241-210 defines principles for
designing interactive systems with a focus on user comfort, safety, and
effectiveness.[13] This standard is relevant to the illumination system because it
emphasizes minimizing discomfort. Glare, and distractions. important that the system

74

does not affect the player’s comfort. Avoiding glare and minimizing distracting
illumination effects is important for user comfort and effectiveness. The system will
follow ISO 9241-210 by ensuring the LEDs do not produce visually uncomfortable
brightness (by selecting 850nm over visible white), by time-multiplexing zones to
prevent perceptible filcker, and by mounting the arrays to avoid direct illumination into
the players’ eyes. Together, these measures support a user-centered design that
prioritizes both an enjoyable and non-distracting gameplay experience.

4.1.3 IEC 60598 Luminaires

The final standard considered is IEC 60598. IEC 60598 specifies safety requirements
for luminaires with respect to electrical, thermal, and mechanical hazards[15]. Although
originally written for traditional lighting fixtures, its principles remain relevant due to the
LED arrays function as a luminaire in the player environment. The system will follow
these guidelines by ensuring properly rated wiring, insulation, and current-limiting fuses
to prevent electrical shock, overheating, or mechanical failure. Given that the proposed
12V LED illumination operates at low voltage with moderate current, no additional IEC
60598 certification is anticipated beyond following standard best practices.

Finally basic electromagnetic compatibility considerations (EMC) practices were
considered to ensure the LED driver circuitry does not interfere with the camera system.
The PCB will include standard layout practices such as decoupling capacitors and solid
grounding to reduce any risk of electrical noise affecting camera performance.

4.2 Optical Design Constraints

The main design constraint for the optical system is achieving a sufficient horizontal
field of view (HFOV) to cover the entire dance pad array. The system must monitor a 2.9
m * 2.9 m play area from a camera mounted approximately 1.8m away. This geometric
requirement translates to a horizontal field of view of approximately 93°, based on
trigonometric calculations. Maintaining this coverage ensures that all nine dance pads
remain consistently visible to the pose estimation algorithm at all times. Minimizing the
possibility of tracking errors or missing key player landmarks. To achieve this constraint,
a 3mm focal length aspherical lens was designed, balancing the need for wide-angle
capture with minimal distortion and acceptable pixel resolution. This design choice
guarantees that the system can consistently and reliably observe the entire interactive
area without gaps, which is essential for gameplay accuracy and user satisfaction.

With a 93° FOV covering the dance pad array, each pad will occupy a relatively small
number of pixels in a 1080p frame. This means there will be a trade-off between
covering a large area and maintaining enough pixel density for precise pose detection.
The 3 mm aspherical lens balances this trade-off by providing wide coverage while
maintaining acceptable pixel density to allow MediaPipe to resolve key landmarks with
adequate clarity. This constraint ensures that gameplay remains responsive and
reliable, without introducing latency or missed detections.

75

The physical placement of the camera module is another important constraint. The
camera must be positioned to achieve the target field of view while avoiding occlusions
caused by player movements, and minimizing distortion. The camera is planned to be
mounted at the average torso height of approximately 1-1.5m above the floor, and
angled downward to encompass the entire 2.9 m * 2.9 m dance pad array, This position
balances both the horizontal and vertical FOV requirements while maintaining a natural
perspective of the player’s posture. It also helps minimize motion blur and ensures that
MediaPipe receives high-quality data without key body joints being blocked by sudden
movements. Consistent, predictable mounting geometry is essential to calibrate the
tracking system and maintain performance between game sessions.

Uniformity of illumination is a critical design constraint to ensure that MediaPipe’s AI
pose estimation functions accurately across the entire play area. A non-uniform lighting
pattern with hotspots or dark corners could cause the system to lose track of the player,
reducing gameplay accuracy. An issue that could arise in dimly lit rooms such as some
arcade enivronments. The target uniformity is specified as at least 85%, ensuring that
the lowest illuminated areas maintain at least 85% of the brightness of the most
illuminated regions. To achieve this, the LED layout was designed to distribute light
evenly, with time-multiplexed zone activation reducing local overheating and maintaining
consistent brightness throughout the tracking space. During testing, uniformity will be
verified by analyzing pixel intensities of a calibration target using the camera sensor, as
a practical substitute for more complex photodiode measurements. This constraint
supports a robust, repeatable, and comfortable user experience.

The power consumption of the LED-based illumination system was considered to
ensure the system operated within reasonable current limits while maintaining efficient
performance. Time-multiplexing was adopted to keep the instantaneous current per
zone modest, simplifying the PCB layout and reducing any potential thermal buildup. By
activating only one lighting zone per camera frame (at 120 fps with an 8.3 ms frame
duration), and cycling through all four zones every 33 ms, the system limits
instantaneous current draw 1.5A per zone instead of a peak 6A if operated
simultaneously. This strategy supports simpler, more reliable driver electronics while
ensuring consistent illumination without perceptible flicker for the pose detection
algorithm.

5. Comparison of AI Engines

The goal of using various Artificial Intelligence engines is to see various aspects of
information given by Artificial Intelligence and compare them with one another. One
main question that was asked to the 4 engines used was: What would be the best way
to create a rhythm game for a beginner? Would using a game engine be best or
are there other alternatives to complete this objective? The reason for the prompt
was to find out what would be the best way to create a rhythm game for a project of this
magnitude. We have heard of game engines that existed just as Godot, Unity, Unreal

76

Engine, and Scratch, however we wanted to see which of those listed are beginner
friendly. Furthermore we wanted to see if Artificial Intelligence would have
recommended any other sources that aren't game engines that exist that are also
beginner friendly that could be used to accomplish our objective. What we found were
the following responses from each Artificial Intelligence engine when given the prompt
above.

5.1 ChatGPT

"Using a game engine is strongly recommended for beginners because it

handles many hard parts (rendering, audio, input, timing) so you can focus

on the gameplay.​
​
Top Beginner-Friendly Game Engines:​
1. Unity (with C#)​
✅ Strong community, lots of tutorials​
✅ Built-in support for music syncing, 2D and 3D​
✅ Asset Store has ready-made rhythm tools​
📘 Tutorial: "How to make a rhythm game in Unity" (e.g., Brackeys' or Code

Monkey's guides)​
​
2. Godot (with GDScript or C#)​
✅ Lightweight, open-source, no royalties​
✅ Very beginner-friendly scripting​
✅ Good 2D support​
📘 Search: "Godot rhythm game tutorial"​
​
3. Scratch (for absolute beginners or younger users)​
✅ Drag-and-drop programming​
✅ Great for learning the logic of timing and input​
​
❌ Limited in terms of polish and performance"​

(ChatGPT GPT-4, 2025)

After looking at ChatGPT, some helpful information was given as to what we can
use for the game design. Game engines are a recommended resources to use for
those who are coding games as a beginner. Game engines are able to help users
with difficult portions of game design such as inputs and audio. The ones that
ChatGPT recommended were Unity and Godot with scratch being added as well.

77

5.2 Gemini

For a beginner looking to create a rhythm game, using a game engine

is generally the best and most recommended approach. While

alternatives exist, game engines offer significant advantages in

terms of ease of use, built-in features, and community support, which

are crucial for someone starting out.​
Here's why game engines are ideal and what alternatives exist:​
Why Game Engines are Best for Beginners​
Game engines provide a framework and tools that simplify many complex

aspects of game development, especially for rhythm games:​
Audio Synchronization: Rhythm games are all about precise timing with

music. Game engines have robust audio systems that make it much

easier to load, play, and synchronize events with audio tracks. Many

even offer tools for beat mapping or have plugins that help analyze

audio to extract beat information.​
Visuals and Animations: Creating the visual feedback for hits, note

scrolling, and character animations is streamlined with an engine's

visual editors and animation tools.​
Input Handling: Game engines simplify capturing player input (key

presses, taps, etc.) and checking them against timed events.​
Physics (if needed): While less critical for core rhythm game

mechanics, if you want any physical interactions (e.g., objects

reacting to hits), the engine's physics engine will handle it.​
UI Development: Most engines have intuitive UI systems for creating

scores, combo meters, health bars, and menus.​
Cross-Platform Deployment: If you eventually want your game on

different platforms (PC, mobile, web), engines often have built-in

tools for exporting to multiple targets.​
Community and Resources: Popular game engines have vast communities,

tutorials, forums, and asset stores, which are invaluable for

learning and troubleshooting.​
Recommended Game Engines for Rhythm Games (Beginner-Friendly)​
Godot Engine:​
Pros: Free and open-source, lightweight, excellent for 2D games

(which is common for rhythm games), has its own beginner-friendly

scripting language (GDScript, similar to Python), and a growing

community.​
Considerations: While its audio features are good, you might need to

dive a bit into scripting for advanced synchronization.​

78

Unity:​
Pros: Extremely versatile, widely used, massive community and asset

store, robust audio tools, and a good choice for both 2D and 3D.​
Considerations: Can be a bit more overwhelming at first due to its

vastness, uses C# for scripting (which is a good language to learn,

but might be a slightly steeper curve than GDScript for absolute

beginners).​
GameMaker Studio 2:​
Pros: Very beginner-friendly, especially if you prefer a visual

scripting approach (though it also has its own scripting language,

GML), excellent for 2D games, and a good option for quickly

prototyping ideas.​
Considerations: Less powerful for complex 3D games compared to Unity

or Unreal.

(Google Gemini 2.5 Flash, 2025)

Google Gemini gave us a more indepth look as to why game engines would be best
resource to use when creating a rhythm game. Google Gemini explains that game
engines handle much of the work in regards to audio synchronization, inputs, and have
communities that contain many forums, tutorials, and other useful tools for creating
games. The game engines that Google Gemini recommended were similar to those of
ChatGPT, including Godot and Unity, however did not mention scratch but rather
mentioned GameMaker Studio.

5.3 Microsoft Copilot

1. Using a Game Engine (Highly Recommended!)​
Game engines handle graphics, sound, input, and more -- all the

essentials for a rhythm game.​
Unity (with C#)​
One of the most popular engines for rhythm games.​
Tons of community tutorials and asset store packages.​
Great audio timing tools via AudioSource and Timeline.​
Godot (with GDScript)​
Lightweight and beginner-friendly.​
Has a built-in animation player and audio support.​
Open-source with lots of documentation.​
2. No-Code or Low-Code Tools​
If coding feels overwhelming, these tools let you focus more on

79

design and logic.​
Construct 3 or GDevelop​
Drag-and-drop interfaces.​
You can create rhythm-based actions with timers and animations.​
Perfect for prototyping without writing code.​
3. Web-Based Tools​
Want to build something playable in a browser?​
p5.js (JavaScript-based creative coding library)​
Lets you sync visuals to audio beats.​
Requires some coding, but great for creative freedom.​
Scratch​
Ultra beginner-friendly.​
You can make simple rhythm games with sprite animations and sound

blocks.

(Microsoft Copilot, 2025)

Microsoft pilot wasn’t a very useful tool as it gave similar information to ChatGPT and
Google Gemini in regards to which game engines to use and had no deviation in
regards to that information. Using a no-code design would not be useful for us and we
would not be accessing the web for our project thus both section 2 and section 3 do not
apply to our project.

5.4 DeepSeek

Creating a rhythm game as a beginner is an exciting challenge! Using

a game engine is overwhelmingly the best choice for a beginner.

Here's why and how to approach it:​
Why a Game Engine is Best:​
Abstraction of Complexity: Engines handle graphics rendering, physics

(if needed), input management, audio playback, and cross-platform

deployment. You focus on your game logic.​
Built-in Tools: Visual editors, animation systems, asset managers,

and debuggers significantly speed up development.​
Asset Pipelines: Easily import graphics, sounds, and music.​
Community & Resources: Massive tutorials, documentation, forums, and

asset stores specifically for game engines. Crucial for learning.​
Rapid Prototyping: Test core mechanics (like hitting notes to the

beat) very quickly.​

80

Precision Timing: Engines provide high-resolution timers and

frame-independent update loops, essential for rhythm game accuracy.​
Recommended Game Engines for Beginners (Rhythm Focus):​
Unity (C#):​
Pros: Largest community & tutorials, vast asset store, powerful &

flexible, excellent 2D & 3D support, good performance. Many rhythm

game tutorials exist.​
Cons: Can feel bloated for very small projects, newer input system

has a learning curve.​
Why for Rhythm: Mature audio APIs (AudioSource, AudioClip),

coroutines for timing, strong animation tools for note

highways/effects. Great for both 2D and 3D rhythm games.​
Godot (GDScript - Python-like, C#):​
Pros: Lightweight, fast, completely free & open-source, incredibly

intuitive scene/node system, excellent 2D support, growing community.

GDScript is easy to learn.​
Cons: Smaller community/resources than Unity (but growing fast), 3D

is capable but less mature than Unity/Unreal, asset store smaller.​
Why for Rhythm: Built-in AudioStreamPlayer nodes, strong signal

system for event handling (great for hit/miss events), Tween nodes

for smooth animations. Very well-suited for 2D rhythm games.​
Unreal Engine (Blueprints Visual Scripting, C++):​
Pros: Stunning visuals "out of the box," powerful Blueprints visual

scripting (great if you struggle with text code), best-in-class 3D.​
Cons: Steeper learning curve overall, larger download/overhead, C++

is complex for true beginners, potentially overkill for a simple 2D

rhythm game.​
Why for Rhythm: Robust audio system, Blueprints can be used for core

timing logic, great for ambitious 3D rhythm games (like VR).​
Avoid (for a Beginner) / Use With Caution:​
Pure Programming Languages (Python/Pygame, JavaScript/HTML5 Canvas,

C++/SDL, Java/LibGDX):​
Pros: Maximum control, deep learning, lightweight.​
Cons: You have to build everything from scratch: rendering

shapes/sprites, playing sounds precisely, handling input, managing

game states, timing. High risk of getting bogged down in low-level

details before making game progress. Audio timing precision is

notoriously tricky without engine help.​
When Consider? Only if you have significant programming experience

81

already and specifically want the challenge of building the

underlying systems. Not recommended for a first project.​
Best Approach for a Beginner Using an Engine:​
Choose Your Engine: Pick Unity (broadest resources) or Godot

(simplicity, great 2D) based on your preference. Download it.​
Start TINY: Your first goal is NOT "Guitar Hero Clone." Aim for: "A

single button that I have to press when a moving dot hits a line,

synchronized to a simple drum beat."​
Learn Engine Fundamentals:​
Follow the official "Getting Started" tutorials for your engine.​
Understand core concepts: Scenes/Objects, Components/Nodes,

Transforms, Basic Scripting (C# for Unity, GDScript for Godot).​
Core Rhythm Prototype:​
Audio: Import a short, simple loop (e.g., a 4-beat drum pattern).

Learn to play it.​
Note Spawning: Write code to spawn a visual object (a cube, circle)

at a specific time before it needs to be hit. Hardcode the timing at

first.​
Note Movement: Move the spawned object towards a "hit line" at a

constant speed. Ensure its arrival time matches the beat time.​
Input Detection: Detect when the player presses the designated key

(e.g., Spacebar).​
Judgment: When the key is pressed, check the distance of the note

object to the hit line.​
Very close (e.g., within 50ms window): "Perfect!" (Destroy note, add

score).​
Close (e.g., 50-100ms): "Good!"​
Too early/late: "Miss!" (Destroy note, maybe show penalty).​
Feedback: Show text ("Perfect!"), play sounds, add particle effects

on hit/miss.​
Refine & Expand: Once the core loop works:​
Level Design: Create a system (like a text file or simple array) to

define note timings instead of hardcoding.​
Multiple Lanes/Buttons: Add more hit lines and map them to different

keys (e.g., Left/Right Arrow, A/S/D keys).​
Better Graphics: Replace cubes with sprites, add a background.​
UI: Add a start screen, score display, combo counter.​
Music: Use a full song instead of a loop. Crucially, learn about

audio offset calibration to sync your note timing perfectly with the

82

track in the engine.​
Difficulty: Adjust note speed, timing window size, or note density.​
Crucial Rhythm Game Specifics:​
Precise Timing: Use the engine's high-resolution time (Time.time in

Unity, OS.get_ticks_usec() in Godot) for judgment, not frame-based

logic. Account for display latency if needed (less critical early

on).​
Audio Analysis (Advanced): Initially, manually chart your note

timings by listening to the song. Later, explore tools or libraries

(like BASS, FMOD integration) for beat detection, but manual charting

is standard for precise rhythm games.​
Input Lag: Be aware that monitors/TVs, audio devices, and peripherals

add lag. Calibration settings in your game are essential later on.​
Alternatives ONLY if Engines Feel Too Heavy (Still Not Ideal):​
Specialized Frameworks:​
LÖVE (Lua): Simpler framework than raw OpenGL, but still requires

building most systems. Lua is easy to learn.​
Phaser (JavaScript): Web-based framework. Good if you know JS and

want a web game. Still requires more setup than an engine.​
Rhythm Game Creation Tools (Limited): Tools like "K-Shoot Mania

Editor" or "StepMania/Etterna Editor" exist, but they are for

creating charts for existing, specific rhythm game engines, not

building your own unique game from scratch.​
Conclusion:​
Start with a game engine (Unity or Godot are top recommendations for

beginners). Focus relentlessly on building the tiniest possible

playable rhythm prototype (one button, one note type, one beat).

Learn the engine fundamentals through that process. Resist the urge

to build your dream game immediately. Completing a tiny, functional

prototype is infinitely more valuable and motivating than getting

lost in the complexity of a "from-scratch" approach or an overly

ambitious first design. Good luck!

(Deepseek R-1, 2025)

DeepSeek gave us the most amount of information regarding the game engine and the
rhythm game. It recommended Unity and Godot as the top 2 choices for deciding which
game engine to use, however it also included Unreal Engine which is a common game
engine that is used. Furthermore DeepSeek also gave us insightful tips as to how to
proceed with the game design of the rhythm game itself. These tips include starting

83

small and afterwards adding more features, following online tutorials for the game
engine of choice, and also attempting prototyping with different aspects that will be
implemented. DeepSeek was the most helpful in this case and had a positive outcome
on how we continued with the project.

5.5 Conclusion

Using these Artificial Systems, it gave us a lot of information as to where we can start
on the software side of creating the rhythm system. All 4 searches recommended that
the game engine would be the most useful resource to use due to its friendliness to
beginners, not only that but for a project of this magnitude it would be the more effective
one to use.

Furthermore, Artificial Intelligence gave us some useful game engines to use. These
game engines are ones we have heard of, with those being Godot, Unity, and Unreal
Engine. ChatGPT specifically mentioned Godot and Unity with also adding benefits of
what they have as features. For example, according to ChatGPT, Godot is lightweight,
open-source, does not have any royalties, has very beginner-friendly scripting, and has
good 2D support.

Similarly, both Microsoft Copilot and DeepSeek have a very similar response regarding
using Godot as a game engine saying that Godot is lightweight and beginner-friendly
and is open-source. Microsoft Copilot specifically mentions having a built in animation
player and audio support. Deepseek gives us specific cons, some of which we don't
need to acknowledge due to us not needing it, which is “3D capability is less mature
than Unity”. This is irrelevant to us since we will be making a 2D game. However, having
a small asset store causes us to need to hand make objects or find assets that we are
able to use as long as we abide by their terms and services.

In the end, with the help of artificial intelligence, we had a start as to which game engine
we could research to help us the best.

84

6. Hardware Design

6.1 Dance Pad Controller Board

Figure 6.1 Dance Pad Controller Board Schematic

This board is the "brain" of the entire system. Its primary jobs are to read the inputs from
the nine dance pad sensors, act as a USB game controller to communicate with the PC,
and send control signals for the lighting.

Main Components and Functions:

Microcontroller (U1 - ATmega32U4): This is the central processor. We chose this
specific chip because it has built-in USB capabilities, which allows it to be easily
recognized by a computer as a game controller without needing extra components.

●​ Clock (Y1): The 16MHz crystal oscillator provides a stable and accurate clock
signal, which is essential for reliable USB communication.

●​ Reset (SW1): The pushbutton allows for a manual reset of the microcontroller
during development and testing.

●​ Programming (J1 - ICSP): This 6-pin header is the In-Circuit Serial
Programming port. It is used one time to load the Arduino bootloader onto the
chip, which allows us to program it easily via USB.

85

USB Communication (J2):
●​ A USB-C Receptacle provides the data connection to the PC.
●​ The connection is protected by a 500mA Polyfuse (F1) to prevent the board

from drawing too much current and damaging the computer's USB port.
●​ ESD Diodes (D2, D3) protect the sensitive D+ and D- data lines from static

discharge.
●​ 5.1kΩ Resistors (R2, R3) on the CC1 and CC2 pins are required by the USB-C

standard to identify the board as a device to the host computer.

Sensor Interface (FSR Circuits):
●​ The board has nine identical sensor circuits, one for each dance tile.
●​ Each circuit is a voltage divider. For example, the first tile uses two off-board

Force-Sensitive Resistors (FSRs), represented by R18 and R19, which are wired
in parallel. They form a voltage divider with the on-board 10kΩ resistor (R17).

●​ When a player steps on a tile, the FSRs' resistance decreases, causing the
voltage at the output to change.

●​ The output of each of the nine circuits is connected to a unique
Analog-to-Digital Converter (ADC) pin on the microcontroller (e.g., PF0, PF1,
etc.), which reads this voltage change.

Power Filtering:
●​ The board receives its 5V power through the 3-pin connector, J3.
●​ To ensure the microcontroller has clean, stable power, several filters are used. A

Ferrite Bead (L1) and a 1µF capacitor (C3) create a low-pass filter for the
analog power supply (AVCC). This is critical for getting accurate readings from
the FSR sensors.

●​ Several 100nF decoupling capacitors (C6, C7, etc.) are placed near the chip's
power pins to filter out high-frequency noise.

Indicators and Control Output:

●​ A green "ON" LED (connected via resistor R34) provides a simple visual
confirmation that the board is powered on.

●​ The 3-pin connector (J3) also sends a PWM (Pulse-Width Modulation) control
signal from pin PC6 to the Power Hub Board to control the brightness of the TV's
IR illumination LEDs.

86

6.2 Power Hub Board

Figure 6.2 Power Hub Board Schematic

This board is a dedicated power supply and driver unit. Its purpose is to take the main
12V input and safely distribute power to the rest of the system, keeping the noisy,
high-current components separate from the sensitive controller board.

Main Power Input (J1): A standard DC Barrel Jack receives 12V from an external
AC-to-DC power brick. A 100µF capacitor (C1) helps to smooth this incoming voltage.

5V Power Supply (U2 - LM2576T-5): This is a highly efficient 5V switching (buck)
regulator.

●​ It takes the 12V input and steps it down to a stable 5V output.
●​ The circuit includes a 100µH inductor (L1), a Schottky diode (D1), and

input/output capacitors (C2, C3) as required by the regulator's datasheet for
stable operation.

●​ This 5V rail is used exclusively to power the Dance Pad Controller Board via the
J2 connector.

87

IR LED Driver (Q1 - N-Channel MOSFET):
●​ This MOSFET acts as a high-speed electronic switch for the 12V IR LED strip,

which connects via the 2-pin screw terminal (J3).
●​ The PWM signal from the controller board comes in through Pin 3 of J2.
●​ A 100Ω resistor (R2) on the MOSFET's Gate protects the microcontroller pin,

and a 10kΩ resistor (R1) pulls the gate to ground to ensure the LEDs stay off
when there is no signal.

●​ When the PWM signal is high, the MOSFET turns on, allowing current to flow
through the LEDs to ground, turning them on. By pulsing this signal, we can
control the brightness.

Board-to-Board Link (J2): This 3-pin JST connector is the link to the main controller.

●​ It sends the +5V and GND from this board to power the controller.
●​ It receives the TV_LED_PWM signal to control the MOSFET.
●​ A green "ON" LED (connected via resistor R34) provides a simple visual

confirmation that the board is powered on.

This two-board system creates a modular, robust, and electrically clean design that
meets all the project requirements.

6.3 Optical Imaging System Design

The optical subsystem is designed to reliably capture and analyze a player's full-body
movements in real time, enabling the system’s pose-based “Style Score” feature. This
subsystem integrates a global shutter camera, wide-angle lens, and an optimized
near-infrared (NIR) LED illumination system to provide robust visual tracking across the
entire play area.

The vision system must cover the 2.9m x 2.9m dance pad at a typical player distance of
1.83m, maintaining a horizontal field of view of approximately 93°.This ensures
consistent landmark detection and minimizes distortion even at the edges of the field.

A time-multiplexed 850nm near-infrared LED system was selected to provide uniform,
comfortable illumination that is invisible or only partially visible to the player but reliably
detected by the camera. This design minimizes distractions while maintaining sufficient
brightness for accurate MediaPipe landmark tracking.

In alignment with the project’s broader objectives stated in Chapter 2, the optical
subsystem emphasizes consistent player coverage, high image clarity, safe illumination,
and efficient integration with the vision-based scoring system. The imaging system is
designed to deliver high spatial resolution, wide field of view, and low-latency image
capture that supports real-time pose estimation. After evaluating multiple options, the
Arducam AR0234 camera module was selected. This camera was selected based on its
technical specifications, including a 2.3MP resolution (1920 * 1200), 3µm pixel pitch,
and frame rates up to 60 FPS over USB 3.0. The global shutter feature helps reduce
motion artifacts during rapid gameplay.

88

Given the dance pad dimensions are 2.9m x 2.9m and the working distance is 1.83m,
the optical system must maintain a horizontal field of view of approximately 93° to
reliably capture the entire play area with minimal occlusions. Commercial lenses with
longer focal lengths or narrow fields of view are impractical, since they would have
required either excessive installation height or more aggressive mounting angles to fully
capture the 2.9 m x 2.9m play area. To avoid these challenges, the system instead uses
a commercially available short focal length M12 lens that is approximately 3mm. It has
a diagonal FOV between 100-114 degrees. The key engineering requirements for the
optical subsystem are summarized in Table 6.1.

Table 6.1 Engineering requirements for the optical imaging subsystem.

Component Parameter Specification Unit

Camera a) Pixel Pitch
b) Resolution
c) Frame Rate

a) 3
b) 1920 x 1200
c) ≥ 60

a) µm
b) pixels
c) FPS

Lens (M12 3mm) a) Focal Length
b) Horizontal Field
of View

a) 3
b) 93

a)mm
b)degrees

Optical
Subsystem

a) Brightness
Uniformity
b) Resolution at 6ft

a) ≥85

b) ≥ 3 (resolving
~ 1mm features)

a)%

b) pixels/mm

As summarized in Table 6.1, the selected camera module and lens combination
achieves a pixel pitch of 3 µm with a resolution of 1920 x 1200 pixels, is sufficient to
meet the target of ≥ 3 pixels/mm needed for ~1mm feature detection at a 1.83m
distance. The approximate 93° horizontal field of view ensures the full dance pad
remains visible, while the geometric distortion and brightness uniformity specifications
help preserve consistent landmark tracking across the entire field of play.

6.4 Illumination System Design

Consistent and uniform illumination is essential. In a dim arcade environment or under
changing lighting conditions, the system still needs to have consistent illumination of the
player. Therefore, relying on ambient light alone is insufficient for consistent pose
estimation. To account for this, an active illumination system was designed to provide
uniform coverage across the entire 2.9m x 2.9m dance pad.

850nm near-infrared (NIR) LED strips were selected as the primary illumination source.
Near-infrared wavelengths are partially invisible to the human eye, minimizing player
distraction and discomfort while remaining fully detectable by the camera’s image

89

sensor, which does not have an IR-cut filter. This approach allows for reliable landmark
visibility for MediaPipe while not compromising on user comfort.

To further optimize power consumption and thermal performance, a time-multiplexing
strategy is being used. In this scheme, the dance pad area will be divided into multiple
LED illumination zones, with only one zone activated per camera frame. Cycling rapidly
at the camera’s frame rate of 120 FPS, resulting in a complete zone cycle every 33ms.
Because this frequency exceeds the human flicker fusion threshold, players and the
camera module will still perceive the illumination as continuous.

The selected LED strips are standard 12 V SMD-based products, offering good cost
efficiency and a wide choice of densities (typically 60-120 LEDs/m). Each strip is rated
at approximately 14.4 W/m, with power budgets calculated to keep the current draw
under 2A per zone. Table 6.2 summarizes the engineering requirements for the
illumination system.

Table 6.2 Engineering requirements for the illumination subsystem

Component Parameter Specification Unit

LED Illumination a) Wavelength
b) Brightness
Uniformity
c) Beam Angle
d) Zone Switch
Time
e) Power per Zone

a) 850
b) ≥85

c) ≥ 120
d) ≤ 33
e) ≤ 18

a) nm
b) %

c) degrees
d) ms
e) W

Illumination
System

a) Coverage Area
b) Player Distance

a) 2.9 * 2.9
b) 1.83

a) m
b) m

As summarized in Table 6.2, the 850 nm LED strips are designed to deliver at least 85%
uniform brightness across the entire field of view, with a wide beam angle of ≥ 120° to
minimize shadows. Time-multiplexing with a zone switch time of ≤  33 ms reduces the
total system load while maintaining a seamless visual.

Safety and photobiological compliance were also considered. IEC 62471 guidelines
were reviewed, and the selected 850 nm LED strips fall within Risk Group 1 at specified
radiant exposure and player distance. Although typically arcade lighting is rarely
completely dark, its variability, color saturation, and moving shadows make it unreliable
for consistent pose detection. Therefore, the OR illumination system is necessary to
establish a stable, uniform baseline at the player’s distance of 1.83m. Providing radiant
intensity equivalent to at least 300 lux of visible illumination for consistent landmark
detection. Since the dance pad is intended to be portable for use in home settings, the
lighting conditions there could be even more unpredictable, ranging from bright windows

90

to dim living rooms. Including a controlled illumination system ensures consistent
MediaPipe performance regardless of whether the system is deployed in a commercial
arcade, dorm room, or any other household living space.

The camera module will be mounted at approximately 1.5m height with a downward
angle of about 15-20° to capture the full play area while minimizing occlusions from
player movement. The LED strips are currently planned to be mounted around the
monitor frame to provide even IR coverage while avoiding direct glare into the player’s
eyes. However, other LED mounting configurations will also be tested in SD2 to
determine the most effective combination of coverage uniformity, ease of integration,
and player comfort. The final arrangement will be chosen based on uniformity
measurements and practical field trails to ensure consistent landmark detection
performance.

6.5 Optical System Testing and Verification

The optical and illumination subsystems will be tested to confirm they meet the design
requirements described above. Testing will focus on verifying the horizontal field of view
covers the entire dance pad area, confirming the spatial resolution supports ~ 1 mm
feature detection, measuring illumination uniformity across the player area, ensuring
time- multiplexing achieves seamless coverage without perceptible flicker, and
confirming the system achieves at least 300 lux equivalent at the player’s distance.

Initial testing will involve capturing images of a printed calibration checkerboard to
measure geometric accuracy, including field of view, distortion, and alignment[8].
Separately, a uniform reflectivity target such as a matte white board will be used to
verify even illumination across the play area. Pixel intensity measurements from these
images will be analyzed to assess both brightness uniformity and overall image quality.
If any issues such as uneven lighting, distortion, or poor focus are identified,
adjustments will be made to the lens focus, LED placement, or camera alignment prior
to full integration.

7. Software Design
7.1 Input/Output

The primary method of input for the rhythm game is the custom-built dance pad, which
functions similarly to a keyboard from the perspective of the operating system. During
gameplay, the game continuously polls for input every frame, much like a traditional PC
game responds to keyboard input. Our custom PCB includes a microcontroller (MCU)
responsible for interpreting signals from force sensing resistors (FSRs) embedded in
each panel of the dance pad. These signals are converted into digital keypresses and
transmitted to the host computer over a USB connection. As far as the PC is concerned,
the dance pad appears as a standard USB keyboard, with each directional panel
mapped to a specific keycode.

91

This input abstraction allows for flexibility during development and testing. Although the
dance pad is the intended method of interaction, players could also use a conventional
keyboard to play the game. However, this alternative would lack the physicality and
immersive experience that the dance pad is designed to provide.

The game maintains an internal representation of the current input state, tracking which
directional inputs are actively being held and recording the precise timing of each press
event. When a player steps on a panel corresponding to a direction (such as up, down,
left, right, center, or any of the diagonals), the game updates its internal state to reflect
that the direction is currently active. It also records the timestamp or frame number at
which the input was first detected. This information is used for evaluating the accuracy
of the player's timing during gameplay.

When the player lifts their foot and the input is released, the game updates the state to
mark that direction as no longer active. This real-time management of directional states
and associated timing data ensures that the game can accurately judge the player's
inputs against the expected cues defined in the song chart. A diagram of this input and
output flow is shown in Figure 7.1.

Figure 7.1 Input/Output Flow Diagram

7.2 State

The concept of state plays a central role in the software's logic. The input state is
composed of several components, with each of the nine directional inputs represented
as individual objects. These objects include a boolean indicating whether the input is
currently held down, and if so, they also store the time or frame at which the press

92

began. This enables precise tracking of how long a panel has been held and when the
input occurred relative to the rhythm chart.

In addition to directional input, the system also tracks the player's current pose using the
output from the computer vision subsystem. The pose state is updated every frame
based on the latest keypoint and gesture analysis results. Each pose is identified by a
label (such as “hands up” or “lean left”) and is associated with a confidence score and
the time at which it was first detected. The pose state behaves similarly to directional
input, allowing the game to evaluate whether the player is performing the correct pose
at a given moment in the song.

The system also maintains a variable that stores the most recently changed input or
pose, useful for debugging, scoring, and triggering visual effects. At the start of each
song, the input state is initialized to a neutral condition, with no active inputs or poses.
As gameplay progresses, the state evolves to reflect the player’s ongoing actions. The
flow of this state update process is illustrated in Figure 7.2, which outlines how the
game responds to input and pose events.

Figure 7.2 Note State Flow Diagram

7.3 Event handling

Scoring in the rhythm game is driven by discrete gameplay events that are defined in
the song chart. These events fall into two main categories: directional note events and
pose-based gesture events. When the game encounters one of these events during
playback, it checks the current input state to determine whether the player has correctly
performed the expected action.

93

Each event is associated with a specific timestamp or frame number. At the moment an
event is triggered, the game compares the expected input or pose to the actual state of
the player, as recorded in the current frame and recent frame history. A timing window is
applied to judge how closely the player’s action aligns with the event.

The judgment criteria follow a frame-based window around the expected frame of the
event:

●​ If the input or pose is detected within ±3 frames, the judgment is marked as
Perfect.​

●​ If detected within ±5 frames, it is marked as Great.​

●​ If within ±8 frames, it is considered Okay.​

●​ If the correct input or pose is not detected within 8 frames of the event, it is
scored as a Miss.​

This scoring logic is applied consistently to both directional and pose events. However,
additional tolerance may be applied to pose events to account for the inherent variability
of real-time pose detection. Factors such as model inference delay, confidence
thresholds, and temporal smoothing can introduce minor inconsistencies, so the system
may offer a slightly wider scoring window for gestures without compromising the
integrity of the gameplay.

By evaluating input and pose accuracy within tightly defined timing windows, the game
can provide responsive feedback and fair scoring that rewards player precision while
accommodating the occasional noise present in computer vision systems.

94

Figure 7.3 Event Scoring Flowchart

7.4 Pose Handling

Using the OpenCV and Mediapipe software, we first obtain the image sent by the
camera module that will show the person. Afterwards our machine learning model
activates that is what allows the person to be mapped using a series of dots as seen in
Figure 3.10. We will then retrieve the series of dots location and with this information
we can determine if a certain pose is being performed. If a certain pose is being
performed and recognized, then the state will be updated to reflect that. However, if a
pose is not being performed the state will be updated to show that there is no pose that
is being performed.

Using this system there is a possibility due to artificial intelligence, that the state could
be incorrectly updated, however with our system there is a 90% accuracy in correctly
determining the correct state when performing these series of poses at certain portions
of the game’s design.

95

Figure 7.4 Pose State Flow Diagram

96

8. System Fabrication/Prototype Construction

Figure 8.1 Top view: 10x10 inches central acrylic tile, 12x12 w/ border, secured on
wood base w/ standoff blocks

Figure 8.2Top view w/ central tile removed showing electrical routing holes

97

Figure 8.3 Bottom view: standoff blocks to allow for easy cable routing

Figure 8.4 Top View: w/ Force Sensitive Resistors (FSR) placed under acrylic tile.

98

9. Optoelectronics Feasibility Study and Testing

9.1 Feasibility Study

The primary aim of the S.T.E.P system is to function efficiently as a rhythm game
playable in both home and arcade environments, with a cost and power-efficient
architecture. A critical aspect of this is the optical and illumination subsystems. When
planning the lens, it was determined that sourcing an off-the-shelf aspherical M12 lens
was the most practical and cost-efficient strategy, rather than developing a
custom-manufactured optic. A custom aspherical lens would have been expensive and
time-consuming to prototype, while commercial M12 aspherical options still met the
project’s required field of view, resolution, and IR transmission for MediaPipe
performance.

Cost efficiency also drove the camera selection. Initially, higher priced Arducam
modules were considered, but research found the SVPRO AR0234-based global shutter
camera to provide comparable performance for a lower price. This module supports
M12 lenses, has no IR-cut filter, and maintains the necessary 3µm pixel pitch and 60
FPS frame rate for reliable gameplay tracking.

For the illumination system, a key design consideration was ensuring consistent player
coverage while avoiding excessive instantaneous current demands. Arcade
environments can have variable or dim ambient lighting, making active illumination
important for tracking. Initially, larger LED panels inspired by other rhythm games (like
Dance Around) were explored. However, powering all zones simultaneously would have
increased the peak current demands to around 69 W,which would place higher
demands on the power supply and wiring. By instead lighting only one zone at a time,
the peak current was reduced to around 18 W, supporting simpler and more efficient
system integration.

Additional layout options were explored, including ring lights, edge-mounted LED bars,
and corner-mounted strips. These were evaluated for feasibility, wiring complexity, and
potential glare or reflections. Ultimately, monitor-mounted LED arrays offered the best
compromise of player coverage, mechanical simplicity, and consistent geometry relative
to the camera, while supporting portability.

9.1.2 Design Requirements and Specifications

The optical and illumination subsystems must together ensure accurate, consistent
pose tracking under diverse conditions. For the optical design, the target was to achieve
at least 3 pixels per millimeter resolution, a frame rate of 60 FPS minimum, and a
horizontal field of view near 77-93 to reliably capture the entire 2.9 m x 2.9 m dance pad
area from a 1.83 m distance. The lens was expected to maintain minimal geometric
distortion, with sufficient sharpness to resolve ~1mm limb features. For the illumination
system, the design aimed for at least 85% brightness uniformity, 850 nm near-IR

99

wavelength for user comfort, and an equivalent brightness of 300 lux at the player
distance, while managing power with a time-multiplexed scheme to limit peak current
draw. These requirements guided component selection, mechanical layout, and optical
design.

9.2 Optical System Design

The purpose of the vision subsystem is to capture spatially accurate, high-contrast
images of the player’s movements during gameplay, supplying reliable data to the
MediaPipe pose estimation framework for style-based scoring. The optical design is
critical for minimizing ambiguity in landmark detection, reducing the computational
burden on the pose estimation model, and improving real-time responsiveness.

The optical system targets a minimum of 3 pixels per millimeter to resolve features
approximately 1 mm in size on the dance pad. With a pixel pitch of 3.0µm, the required
image-space resolution is:

3 x 3µm = 9.0 µm
The system magnification M is then:

 𝑀 = 𝐼𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 = 9.0µ𝑚

1𝑚𝑚 = 9.0
1000 = 0. 009

 Given the working distance of approximately 1830 mm to the player:
 s1= 1830 𝑚𝑚

 s2 = * s1 = 0.009 * 1830 = 16.47 𝑀 𝑚𝑚 𝑚𝑚
Using the thin lens equation:
 𝑓 = (1

𝑠1 + 1
𝑠2)−1 = (1

1830 𝑚𝑚 + 1
16.47 𝑚𝑚)−1 = 16. 32𝑚𝑚

While this effective focal length is theoretically moderate, the system must cover a very
large field of view from a 1.83m distance. That corresponds to a required horizontal field
of view:

 ° θ

𝐻
= 2 * 𝑎𝑟𝑐𝑡𝑎𝑛 (2896/2

1830) = 77. 3

This confirms a wide-angle lens with a focal length closer to 3 mm is needed, consistent
with the prototype lens choice (CIL329). That lean, with a diagonal FOV near 120°
(translating to roughly 90-100° horizontal on the AR0234 sensor), ensures the system
can fully view the dance pad area without demanding excessive installation height or
extreme tilt angles.

9.3 Optical Illumination System Testing and Verification

The optical and illumination system will be carefully tested to ensure they meet these
engineering requirements before integration into the full S.T.E.P cabinet. Testing will
focus on verifying that the field of view fully covers the 2.9 m x 2.9 m dance pad,
confirming spatial resolution supports ~ 1mm feature detection, measuring illumination

100

uniformity across the player’s body, ensuring time-multiplexed zones maintain seamless
perceived lighting without flicker, and verifying that a minimum of 300 lux equivalent
illumination is achieved at a player distance of 1.83 m.

Geometric and image quality verification will be carried out using a printed calibration
checkerboard pattern to check the camera’s coverage, measure geometric distortion,
and confirm the intended horizontal field of view. Separately, a uniform reflectivity target
will be used to verify even illumination across the dance pad area. Pixel intensity
measurements will then be analyzed frame-by-frame to confirm both brightness
uniformity and signal-to-noise performance, ensuring no major shadows or hotspots
occur during typical player movements.

10. Administrative Content

10.1 Budget
We are aiming to limit the budget of this project to $500. Table 10.2 as shown below
lists the bill of materials. Although we want to minimize costs, we also want to ensure
we have materials that have a good enough quality so that they are reliable and
efficient. This includes the framework (hard materials), PCB, RGB LEDs, LED ring,
camera module, and force-sensing resistors. If any of these were bought very cheap
without taking into account better affordable options, we would face consequences.

10.2 Bill of Materials
Table 10.1 Itemized Bill of Materials

Item Dimensions Estimated
Unit Cost

Quantity Estimated
Total Cost

SVP AR0234 Sensor 38mm x 38mm $65.99 1 $65.99

Commonlands CIL329 lens 20mm x 14mm $39.00 1 $39.00

DC12/24V 5050 SMD 5m x 0.01m $28.99 1 $28.99

PCB undetermined $50 1 $50

Force-Sensing Resistors 12.7mm x 57mm $5 18 $90

Plywood 36 `` x 38 x ¼ `` $50 1 $50

Aluminum Square tubing 38`` x 38`` x 1/8`` $10 6 $60

Polycarbonate Sheets 11.75 ``x 11.75``
x 0.25 ``

$0 9 $0(already
have)

Non-Slip Rubber Mat 2ft x 4ft x 3mm $20 1 $20

101

10.3 Distribution of Worktable

Table 10.2 Distribution of responsibilities of each member for this project

Name Major Responsibilities

Andres​
Abrams

Computer ​
Engineer

Software Assistant

Software Design and Implementation

Game Design

Name Major Responsibilities

Blake ​
Whitaker

Electrical​
Engineer

Hardware Lead

PSU Design and Implementation

PCB Design

Name Major Responsibilities

Christopher ​
Solanila

Computer​
Engineer

Project/Software Lead

Website Design and Management

Software Design and Implementation

Game Design

Computer Vision Implementation

Name Major Responsibilities

Jani Jon
Lumibao

Computer ​
Engineer

Hardware Assistant

MCU Selection and Implementation

Embedded Programming

102

Name Major Responsibilities

Kaila​
Peeples

Photonics
Engineer

Lens Design and Simulation

Camera Module Integration

Optical and Illumination System Optimization

Image Quality Calibration

Illumination planning and testing

10.4 Project Milestones for SD1 and SD2

10.4.1 Project Milestones for SD1

Table 10.3 Project Milestones SD1

Due Week Advancement

1 Group Creation and have base idea

2 Researching and Innovating based off idea

3 Divide and Conquer Document completed, Have at least 1
committee member

4 Meet for revisions (if any) of Divide and Conquer Document with
committee members, upload revised document into group website

4-5 Individual Research

6 40 pages finished

7 Meet for revisions (if any) with committee members

7-8 Testing of components

9 100 pages finished turn in Midterm Report

10 Meet for revisions (if any) with committee members

10-11 Start on video, finishing touches to 120 page document

12 150 page document finished, mini video finalized

103

10.4.2 Project Milestones for SD2

Table 10.4 Project Milestones for SD2

Anticipated Start Week Advancement

1 Camera Completion

1 PAD completion

1 Game Completion

4 Pad and Game integration

4 Camera detection

10 Camera integration

16 Final Day and Live Demo

104

Appendices

[1]Guerra-Filho, G. B. (2005). Optical Motion Capture: Theory and Implementation.
Revista de Informática Teórica e Aplicada (RITA), 12(2), 1–18.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07147486b65d12c43
26ccb3ad54ca612b52e1ac3

[2] Dance around information. RemyWiki. (n.d.).
https://remywiki.com/DANCE_aROUND_Information

[3] Dance around (AC) - bemani games - music game forums. ZIv. (n.d.).
https://zenius-i-vanisher.com/v5.2/thread?threadid=11041&page=2#:~:text=The%20ga
mes%20body%20tracking%20is,games%20that%20cater%20to%20everyone.

[4] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh. OpenPose: Realtime
Multi-Person 2D Pose Estimation using Part Affinity Fields IEEE TPAMI, 2019.
https://doi.org/10.1109/TPAMI.2019.292925

[5] Google MediaPipe. (2024). Pose Estimation. Retrieved from =
https://developers.google.com/mediapipe/solutions/vision/pose

[6] Step Revolution. (2024). StepManiaX. Kyle Ward Retrieved from
https://stepmaniax.com

[7] Sciotex. (n.d.). Light colors used in machine vision. Retrieved from
https://sciotex.com/light-colors-used-in-machine-vision/

[8] Ultralytics. (2025). A guide to camera calibration for computer vision in 2025.
Retrieved from
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-20
25#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld
%20AI%20applications

[9] Flexfire LEDs. (n.d.). Color rendering index (CRI) and LED lighting: What is CRI?
Retrieved from
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:tex
t=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%2
0quality

[10] MassedCompute. (n.d.). How does the size of an image affect the training time of a
CNN? Retrieved from
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20
of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN

[11] Supertek Module. (n.d.). Monochrome camera vs. color: Which is best? Retrieved
from

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07147486b65d12c4326ccb3ad54ca612b52e1ac3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07147486b65d12c4326ccb3ad54ca612b52e1ac3
https://zenius-i-vanisher.com/v5.2/thread?threadid=11041&page=2#:~:text=The%20games%20body%20tracking%20is,games%20that%20cater%20to%20everyone
https://zenius-i-vanisher.com/v5.2/thread?threadid=11041&page=2#:~:text=The%20games%20body%20tracking%20is,games%20that%20cater%20to%20everyone
https://developers.google.com/mediapipe/solutions/vision/pose
https://stepmaniax.com
https://sciotex.com/light-colors-used-in-machine-vision/
https://sciotex.com/light-colors-used-in-machine-vision/
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.ultralytics.com/blog/a-guide-to-camera-calibration-for-computer-vision-in-2025#:~:text=Oftentimes%2C%20they%20end%20up%20capturing,for%20real%2Dworld%20AI%20applications
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://www.flexfireleds.com/color-rendering-index-cri-and-led-lighting-what-is-cri/#:~:text=CRIs%20under%2080%20are%20generally,one%20measurement%20for%20light%20quality
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN
https://massedcompute.com/faq-answers/?question=How%20does%20the%20size%20of%20an%20image%20affect%20the%20training%20time%20of%20a%20CNN
https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited

https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome
%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited

[12] Commonlands. (n.d.). Wide angle 3mm M12 lens CIL329. Commonlands.
Retrieved July 10, 2025, from
https://commonlands.com/products/wide-angle-3mm-m12-lens-cil329

[13] International Organization for Standardization. (2010). ISO 9241-210: Ergonomics
of human-system interaction. Retrieved from
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO
-9241-210-2010.pdf

[14] Smart Vision Lights. (n.d.). IEC/EN 62471 summary: Photobiological safety of
lamps and lamp systems. Retrieved from
https://smartvisionlights.com/wp-content/uploads/IEC_62471_summary.pdf

[15] IEC. (2006). IEC 60598-1: Luminaires - Part 1: General requirements and tests.
Retrieved from
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-St
andard-Free-Download.pdf

[16]] Sobel, I., & Feldman, G. (1968). An Isotropic 3×3 Image Gradient Operator.
Introduced the Sobel operator for edge detection. Retrieved from
https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradien
t_Operator

[17] Canny, J. F. (1986). A Computational Approach to Edge Detection. Proposed the
multi-stage Canny detector with Gaussian, non-max suppression, and hysteresis.
Retrieved from
https://www.researchgate.net/publication/224377985_A_Computational_Approach_To_
Edge_Detection

[18] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks (AlexNet) Retrieved from
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-conv
olutional-neural-networks/

[19] Hidalgo, G., et al. (2019). Realtime Multi‑Person 2D Pose Estimation using Part
Affinity Fields Retrieved from
https://www.ri.cmu.edu/publications/openpose-whole-body-pose-estimation/

[20] Google Research. (2020). BlazePose: On-device, Real-time Body Pose Tracking
Retrieved from
https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-bla
zepose/

https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited
https://www.supertekmodule.com/monochrome-camera-vs-color/#:~:text=Monochrome%20cameras%20are%20often%20used,color%20cameras%20are%20better%20suited
https://commonlands.com/products/wide-angle-3mm-m12-lens-cil329
https://commonlands.com/products/wide-angle-3mm-m12-lens-cil329
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO-9241-210-2010.pdf
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO-9241-210-2010.pdf
https://cdn.standards.iteh.ai/samples/52075/c30c5ea5097843ecb89a9d417f9cdab1/ISO-9241-210-2010.pdf
https://smartvisionlights.com/wp-content/uploads/IEC_62471_summary.pdf
https://smartvisionlights.com/wp-content/uploads/IEC_62471_summary.pdf
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-Standard-Free-Download.pdf
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-Standard-Free-Download.pdf
https://www.lisungroup.com/wp-content/uploads/2019/07/IEC60598-1-2003-A1-2006-Standard-Free-Download.pdf
https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator
https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator
https://www.researchgate.net/publication/224377985_A_Computational_Approach_To_Edge_Detection
https://www.researchgate.net/publication/224377985_A_Computational_Approach_To_Edge_Detection
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://www.ri.cmu.edu/publications/openpose-whole-body-pose-estimation/?utm_source=chatgpt.com
https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-blazepose/
https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-blazepose/

[21] Google AI. MediaPipe Pose Landmarker lightweight, real‑time 33‑landmark body
pose detection. Retrieved from
https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker

[22] Canva. (2025). Canva [Web application]. Retrieved from https://www.canva.com/

[23] OpenAI. (2023). ChatGPT (Feb 13 version) [Large language model].
https://chat.openai.com

[24] Microsoft. (2025). Copilot [AI assistant]. Microsoft Corporation.
https://www.microsoft.com/copilot

[25] Gemini. (2025, July 6). [Response to a query about rhythm game development]
[Large language model]. Google. https://gemini.google.com

[26] DeepSeek (2024), [large language model developed by DeepSeek AI].
https://chat.deepseek.com/

[27] Unity Technologies. (2025). Unity (6000.0.52f1 LTS) [Computer software].
Retrieved from https://unity.com/download

[28] Godot Engine. (2025). Godot Engine (4.4.1) [Computer software]. Retrieved from
https://godotengine.org/

[29] Image Engineering. (2015). Camera tests: White Paper 1.0. Kerpen, Germany:
Image Engineering GmbH & Co. Retrieved from
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper
_1.0.pdf

https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker
https://www.canva.com/
https://unity.com/releases/editor/whats-new/6000.0.52#installs
https://godotengine.org/
https://godotengine.org/
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper_1.0.pdf
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper_1.0.pdf
https://www.image-engineering.de/content/library/white_paper/cameratests_whitepaper_1.0.pdf

	2. Project Description
	
	2.1 Motivation and Background
	2.2 Existing Product/Past Project/Prior Related Work​
	2.2.1 Dance Dance Revolution
	2.2.2 Pump It Up
	2.2.3 Dance Around
	2.2.4 Dancerush Stardom
	2.2.5 StepManiaX

	2.3 Project Goals
	The main goal of this project is to design and build a self-contained arcade-style rhythm game system that includes both the physical dance pad hardware and the video game software. The system will feature a 9-panel layout to allow for expanded gameplay mechanics. In addition to foot-based input, the game will include a computer vision system that evaluates the player’s expressive movement using a live camera feed. Our goal is to create an experience that rewards both precision and performance, allowing players to interact with the game through both steps and body movements. The final product will include a working rhythm game engine, a functioning pad-to-PC interface, custom chart creation tools, and vision-based style scoring.
	2.3.1 Hardware​
	2.3.2 Software

	2.4 Objectives
	2.4.2 Prototype illustration/Blueprint

	
	2.5 Project Features and Functionalities
	2.5.1 Style Score and Pose-Based Evaluation System
	2.6 Requirements and Specifications
	2.6.1 Parts Specification Requirements Table
	2.6.2 Notes on Specifications​

	2.7 Hardware Block Diagram
	2.8 Software Block Diagram
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Figure 2.8 Software Block Diagram gameplay Gameplay and Chart Creator
	2.10 House of Quality

	3. Research
	3.1 Technologies
	3.1.1 Embedded Systems
	3.1.1.1 MCU vs SBC
	3.1.1.2 MCU is the Better Option… But Why?
	3.1.1.3 Arduino
	
	3.1.1.4 Teensy
	
	3.1.1.5 Raspberry Pi Pico (RP2040)
	3.1.1.3 ESP32
	
	3.1.1.3 STM32
	3.1.2 Dance Pad Sensor
	3.1.2.1 Force-Sensing Resistors
	3.1.2.2 Load Cells
	3.1.2.3 Strain Gauges (Raw)
	3.1.2.4 Piezoelectric Sensors
	3.1.2.5 Break Beam Sensors
	3.1.3 Monochrome vs RGB Sensor
	3.1.4 LED illumination Technology
	3.1.5 Embedded System Development Languages​
	3.1.5.1 C​
	3.1.5.2 Python
	3.1.5.3 Java

	3.1.4 Computer Vision
	3.1.4.1 History of Computer Vision
	3.1.4.5.1 Hardware Capabilities of the Jetson Nano
	The NVIDIA Jetson Nano serves as a compact and cost-effective embedded computing platform aimed at enabling edge AI applications. It is built around a quad-core ARM Cortex-A57 CPU operating at up to 1.43 GHz, paired with a 128-core Maxwell GPU capable of executing parallel computations required by deep learning inference. The board is equipped with 4 GB of LPDDR4 memory, which is shared between the CPU and GPU, making memory contention a critical factor in system performance. This unified memory architecture reduces the overhead of copying data between processors but also introduces constraints when both the vision pipeline and the game engine are competing for memory bandwidth and capacity.
	Despite its modest specifications compared to desktop-class GPUs or higher-tier Jetson modules such as the TX2 or Xavier NX, the Nano is capable of running real-time inference workloads when models are properly optimized. However, it cannot support large-scale convolutional neural networks without suffering from memory exhaustion, cache contention, or reduced throughput. Pose estimation systems that rely on deep neural networks, particularly those involving multiple stacked layers or high-resolution heatmaps, can quickly push the Jetson Nano to its limits. OpenPose, for example, typically requires over 2 GB of RAM just for model inference at full resolution, and relies on multi-branch processing stages to estimate keypoints and limb associations. These demands make it infeasible to deploy OpenPose in its standard form without significant pruning, quantization, and architectural simplification. Even in highly constrained configurations, OpenPose achieves only 3 to 5 frames per second on the Jetson Nano, rendering
	In contrast, lightweight alternatives such as MediaPipe's BlazePose or Pose models are specifically designed to operate under embedded constraints. MediaPipe relies on a streamlined architecture that detects a single person per frame using a detector-tracker approach, typically involving an initial region-of-interest (ROI) proposal followed by a landmark regression stage. These stages are implemented as modular nodes within a dataflow graph that can be reconfigured or pruned depending on the use case. By reducing input resolution, disabling optional filters, and leveraging fixed-point arithmetic, the MediaPipe pipeline can be tuned to achieve 15 to 25 frames per second on the Jetson Nano, even when running alongside other processes such as camera capture and basic game logic.
	Furthermore, the Jetson Nano’s GPU can accelerate some portions of the pipeline through CUDA, though MediaPipe does not natively integrate with NVIDIA TensorRT, which limits the ability to fully offload inference from the CPU unless custom GPU kernels are developed. Nevertheless, the combination of a streamlined pose estimation model, configurable processing graph, and low-memory footprint makes MediaPipe a viable candidate for real-time single-user gesture recognition on this hardware platform.
	3.1.4.5.2 Software Stack and Runtime Optimization
	3.1.4.5.3 Thermal and Power Management Constraints
	3.1.4.5.4 Game Engine Integration and Resource Synchronization
	3.1.4.5.5 Memory Footprint and Latency Targets
	3.1.4.5.6 Summary and Design Tradeoffs

	3.1.5 Game Engines
	3.1.5.1 Godot
	3.1.5.2 Unity
	3.1.5.3 Unreal Engine

	
	3.1.6 Version Control
	3.1.6.1 Github

	3.2 Part Selection
	3.2.1 MCU
	3.2.2 Dance Pad Sensor
	

	3.2.3 Camera Comparison
	3.2.4 Lens Comparison
	3.2.5 LED Part Comparison
	3.2.6 Embedded System Development Languages

	4. Standards and Design Constraints
	4.1.1 IEC 62471 - Photobiological Safety
	4.1.2 ISO 9241-210 - Ergonomics of human-system interaction
	4.1.3 IEC 60598 Luminaires
	4.2 Optical Design Constraints

	5. Comparison of AI Engines
	5.1 ChatGPT
	(ChatGPT GPT-4, 2025)
	5.2 Gemini
	5.3 Microsoft Copilot
	5.4 DeepSeek
	5.5 Conclusion

	
	6. Hardware Design
	6.1 Dance Pad Controller Board
	6.2 Power Hub Board
	6.3 Optical Imaging System Design
	6.4 Illumination System Design
	6.5 Optical System Testing and Verification

	7. Software Design
	7.1 Input/Output
	7.2 State
	7.4 Pose Handling

	
	8. System Fabrication/Prototype Construction
	9. Optoelectronics Feasibility Study and Testing
	9.1 Feasibility Study
	9.1.2 Design Requirements and Specifications
	9.2 Optical System Design
	9.3 Optical Illumination System Testing and Verification

	10. Administrative Content
	10.1 Budget
	10.2 Bill of Materials
	10.3 Distribution of Worktable
	10.4 Project Milestones for SD1 and SD2
	
	10.4.1 Project Milestones for SD1
	
	10.4.2 Project Milestones for SD2
	
	Appendices

