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Abstract - This paper presents S.T.E.P.S. (Style Tracking
Expressive Pad System), a nine-panel rhythm game platform
that fuses traditional timing-based foot input with real-time,
camera-based pose evaluation. The system integrates custom
modular hardware, a computer-vision subsystem, and a
game engine that computes both accuracy and a Style Score
from predefined full-body poses. We detail the mechanical,
electrical, optical, and software design choices; discuss
communication and power architectures; and report
integration results and lessons learned. The prototype
demonstrates low-latency sensing and robust tracking under
varied lighting, offering an extensible approach for
interactive entertainment, exercise-gaming, and overall
human-computer interaction.

I. INTRODUCTION

Commercial thythm games such as DDR, Pump It Up,
and StepManiaX popularized timing-based foot input on
four to five panels. S.T.E.P.S. expands this paradigm with
a nine-panel pad (cardinals, diagonals, and center) and
introduces a Style Score that rewards expressive, full-body
movement during designated moments. This dual-metric
design targets two goals: 1. preserve the “hit on time” skill
loop that competitive players expect, and 2. explicitly
value unique gestures with the upper body so casual and
performance-oriented players feel recognized.

Achieving this required cross-disciplinary engineering:
embedded sensing for reliable foot detection, a modular
electronics architecture to simplify wiring and debugging;
a vision stack tolerant of variable lighting, and a game
engine that synchronizes chart timing, HID input, and pose
prompts.

II. SYSTEM COMPONENTS

The system is best understood by examining its primary
hardware components and how they interact to form the
complete design. This section provides a semi-technical
overview of each module, outlining their functions and
roles within the overall system. These components
establish the foundation for data acquisition, processing,

and communication across the architecture of the design.
A. Microcontrollers

Our design uses an ATmega32U4 microcontroller for
the Master PCB and nine ATmega328P microcontrollers
for the Input Tile PCBs. These chips were chosen because
they’re reliable, power-efficient, and easy to program
using the Arduino IDE. Both provide the necessary
processing performance and memory for our system, while
also supporting USB communication for smooth data
transfer between the dance pad and the computer.

B. Dance Pad Sensors

Each input tile uses a Force-Sensing Resistor (FSR) to
detect when a player steps on it. We selected the Interlink
[2] Electronics FSR 408 model because it’s durable,
affordable, and provides consistent sensitivity. The FSRs
convert foot pressure into analog signals that are read by
the microcontrollers, allowing the system to accurately
capture and respond to each player’s movements.

C. Communication Protocol

I2C communication was selected for its efficiency and
scalability, allowing all nine Tile Boards to interface with
the Master Controller through only two data lines and
power connections. This minimizes wiring complexity,
conserves I/O pins, and maintains sufficient data speed for
real-time sensor polling and LED control, making it the
most suitable protocol for the system’s modular
architecture.

D. Power Supply

A 12V DC, 7A external switch-mode power supply
(SMPS) was chosen to provide stable and efficient power
delivery across the nine-tile system. The 12 V output
meets the LED voltage requirements, while the 7 A rating
offers sufficient overhead beyond the calculated 6 A load.
The SMPS architecture ensures high efficiency and tight
voltage regulation for both high-current lighting and
low-power microcontrollers. Electrical noise is effectively
mitigated through onboard filtering and decoupling
networks integrated into the Power Hub and Master
Controller PCBs. This configuration delivers a safe,
reliable, and compact power solution that supports the
modular design and overall system performance.

E. Voltage Regulator

The system's power subsystem is centered around a
TPS56628, a 4.5V-18V, 6A synchronous buck converter.
This regulator steps down the 12V input from an external
power adapter to a stable 5V rail, which powers both the
main ATmega32U4 controller and a 3x3 grid of nine
ATmega328PB tiles. To mitigate voltage drop and manage
the cumulative current load across the grid, the 5V supply
is split into three distinct power lines. Each line is
dedicated to servicing one column of the 3x3 PCB array,
ensuring all tiles receive a stable operating voltage.



F. NIR LED Control

Control of the Near-Infrared (NIR) LED array is
achieved using a low-side N-channel MOSFET switch
(IRLR7843TRPBF). This logic-level MOSFET is driven
directly by a PWM signal from the microcontroller. The
5V signal from the MCU pin fully exceeds the MOSFET's
2.3V threshold, turning it completely on and allowing
current to flow through the LEDs. This PWM-based
switching enables fine-grained brightness control and
significantly reduces overall power consumption[5].

III. SYSTEM CONCEPT

To understand the complete system, a system flowchart
would be helpful.
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Fig. 1. Overall system flowchart showing the three main
operational states (Receive, Decide, and Play) and how user
inputs progress through each stage of the dance pad system.

In the receive portion of the cycle, inputs from the FSRs
are detected and processed by the Master Controller. This
occurs at two possible times: when the system is idle on
the game menu, or when a song is actively being played.
During the idle state, FSR inputs are primarily used for
navigating through the menu options or selecting game
modes. However, during gameplay, FSR inputs function as
step detections on beat with the music. The receive state
therefore serves as both an input detection phase and an
interrupt listener, depending on the current stage of
operation. When the system is idle, FSR readings are
continuously monitored until a valid input is registered,
prompting a transition to the decide state. During active
gameplay, the same inputs are instead passed directly to
the play state logic, where they are compared to the timing

data of the selected song map.

In the decide portion of the cycle, the system interprets
the FSR inputs received during the menu phase to
determine which song and difficulty level the player has
selected. Once a valid selection is confirmed, the Master
Controller communicates the corresponding song data and
configuration to the computer running the game software.
This transition is notated by the “Song selected?” decision
diamond on the flowchart. If no song selection is made,
the system remains in the receive state, waiting for
additional input. Upon a valid selection, the system
advances to the play state, where the actual gameplay is
initiated. The decide state is therefore responsible for
verifying input, determining gameplay parameters, and
establishing the transition from idle interaction to active
performance.

In the play portion of the cycle, the selected song map is
executed, and the system actively monitors FSR inputs
along with camera-based computer vision data. The FSR
inputs are used to detect step accuracy in real time, while
the external camera sends positional data for pose tracking
and movement analysis. These two input streams are
processed together to evaluate player performance
throughout the song. The play state is the longest and most
dynamic portion of the cycle, functioning as both a
continuous input-processing state and a monitoring state
for end-of-song events. When the song concludes, the
system transitions back to the receive state for menu
navigation and result viewing, completing the full
operational loop of the dance pad system.

A. System Hardware Concept

The following block diagrams present each primary
hardware module, highlighting the data and control flow
between them.
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Fig. 2. High level hardware visual of overall design
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controller for our dance pad system, especially for
single-player setups with limited hardware demands.

2) ATmega328pb Microcontroller (Slave Input Tile)

For our nine slave input tiles, we needed a
microcontroller chip that could do the bare minimum as it
would only be responsible for LED functionality and
connecting to the FSRs. Additionally, to stay within our
budget, we needed an affordable MCU. As a result, we
decided on the ATmega328pb chip, which is commonly
found in Arduino Uno development boards. The
ATmega328pb chip is very compatible with ATmega32u4,
so communication between the two through Arduino IDE
is very simple to work with. In terms of design, each of
our dance pad’s input tiles will have four FSRs connected
to them and four I°C connection headers[4] to be able to
connect with other input tiles. ATmega328pb can satisfy
all design requirements while being very cost-efficient.

Fig.3. Hardware block diagram of the design’s major system
components, shown in a data I/O flowchart

IV. HARDWARE DETAIL

While all hardware components have been outlined and
briefly explained in the past sections, the following section
explains the hardware components of the design in
technical detail, with the exception of the power hub, as it
was already explained in enough detail in Section II.

A. Hardware Components
1) ATmega32u4 Microcontroller (Master)

Upon researching for the most reliable master
microcontroller unit, we ultimately decided on using the
ATmega32u4 chip, which is commonly found in Arduino
Leonardo development boards. The ATmega32u4 natively
supports USB HID[9], which allows it to act as a keyboard
or joystick, extremely crucial for our game’s real-time step
detection. The ATmega32u4 has just enough analog inputs
for our design by the way we have it wired out. Overall, it
has the right balance between functionality, ease of use,
and affordability, making it a practical and reliable core

TABLE I

KEY FEATURES OF THE DESIGN’S MCUS
Feature ATmega32u4 ATmega328pb
Clock Speed 16 MHz 16 MHz
Flash Memory 32 KB 32 KB
PWM Channels 7 6
ADC Inputs 12 6
USB Comm. native USB serial-to-USB
USB HID support included none
Cost ~$4 ~$3

3) Force Sensing Resistors (FSRs)

The FSR Model 408 from Interlink Electronics was
selected for its reliability, consistency, and ease of
integration. Its 300 mm flexible strip design provides a
large sensing area with uniform pressure response,
ensuring accurate detection across all tiles. The sensor’s
pre-calibrated nature eliminates the need for manual
tuning and minimizes issues such as drift or dead zones
that can affect gameplay precision. Its slim form factor
allows seamless installation beneath each pad surface,
while its durable construction withstands repeated impacts
over time. Overall, the Model 408 delivers the stability,
responsiveness, and plug-and-play simplicity needed for a
performance-grade dance pad system.

B. Hardware Testing

One of our key engineering specifications is the dance
pad’s input response time, therefore, we had to base our
hardware testing on the overall speed it takes for the



player to physically press on an input tile to the moment
the game registers the press as input. While we have tested
and found that the raw response time of the FSRs in
communication with the game is almost instantaneous, we
can’t assume for sure the true speed until the overall
system is established, which at this moment, it’s not.
However, once the dance pad system is fully integrated,
we will then be able to demonstrate, with results, the
dance pad’s true input response time.

V. OPTICAL SYSTEM DETAIL

The optical subsystem of our project is what provides all
the visual input needed for MediaPipe[l] to track the
player’s body in real time. It Includes an 850 nm
near-infrared (NIR) illumination setup, a global-shutter
RGB camera[3], and a wide angle aspherical M12 lens.
The goal was to create an imaging setup that could provide
consistent illumination and resolution across a 1.8m x 1.8
m play area.

After testing in several environments, it was clear that
MediaPipe only requires around 40% illumination
uniformity for accurate tracking. In bright spaces like the
Senior Design Lab, the existing overhead lighting already
provides enough visible light for the camera, so the
additional NIR illumination isn’t even necessary. The
LEDs mainly help in darker rooms where ambient light is
limited.

A. Optical Components
1) Imaging Lens

A 3.2mm /2.3 MI12 aspherical lens
(CIL034-F2.3-M12ANIR) is being used because it gives a
97° diagonal field of view and has the ability to capture
the 850 nm illumination well due to not having a IR cut
filter. This lens, combined with the 1/ 2.6” AR0234
sensor, covers the 1.8m x 1.8m play area at a 1.8m
working distance and provides about 0.6 pixels per
millimeter (=1.7 mm pixel™") across the pad. While that
isn’t enough to resolve Imm-sized features, it’s more than
enough for full-body pose tracking since joints and limbs
span many pixels. MediaPipe consistently reached > 95 %
tracking accuracy with this configuration, so the 3.2 mm
lens was kept for its wide coverage and simplicity.
Depth-of-field analysis using a 0.005 mm circle of
confusion confirmed that subjects between roughly 1.5m
and 2.1 m stay in focus.

2) Camera Module

The SVPRO ARO0234 global-shutter camera runs up to
120 fps @ 720 p with 3.45 pum pixels and strong
near-infrared sensitivity. The global shutter helps prevent
motion distortion during fast movements, which is critical
for a dance-based system. The USB 3.0 interface enables
low-latency data transfer between the camera and
processing unit, and the camera integrates cleanly with the

illumination and lens system to provide stable input for
tracking.

3) [llumination System

The illuminations system uses one 116-inch, ~42W 850
nm LED strip mounted around the perimeter of the
monitor frame to directly face the player area. The strips
are powered by a 12 V constant-voltage supply and remain
continuously on during tracking. Earlier tests were done
using aluminum channels with diffusers, but the diffusers
resulted in reduced brightness and lower measured
illumination uniformity.The effect was likely caused by
insufficient mixing distance and wavelength-dependent
scattering, which caused uneven attenuation of the 850nm
emission. Removing them produced a more uniform and
higher-intensity NIR distribution across the play area. In
bright rooms, the ambient lighting alone is sufficient for
MediaPipe tracking, so the NIR LEDs primarily serve as
supplemental illumination for darker testing environments.
Figure 4 demonstrates that in the controlled environment,
the illumination system achieves the 90% uniformity
spec.

B. Optical Testing

[llumination uniformity was measured in MATLAB
using the min-to-mean intensity ratio across a defined
region of interest. In controlled dark-room testing, the
system reached about 91 % uniformity. In more open or
reflective environments, results ranged from 40% to 75%
depending on wall color, ceiling height, and background
reflections. Camera testing was performed alongside these
trials to confirm that exposure, contrast, and frame
stability were maintained across all lighting conditions.
Even at the lower end of illumination uniformity,
MediaPipe consistently maintained full tracking accuracy,
confirming that roughly 40% uniformity is sufficient for
proper operation.
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Fig. 4. Frame-by-frame illumination uniformity measurement.
The orange region indicates frames where a player was present.
Uniformity remained between 80 % and 91 % throughout testing,
confirming stable illumination during motion.



VI. SOFTWARE DETAIL

The game engine handles song selection, chart parsing,
scroll timing, note judgments, combo/scoring logic, and
UI overlays. The HID input path abstracts pad events as
buttons, avoiding custom kernel drivers.

A. Software Components
1) Godot Game Engine

Inside the game engine of choice Godot, we have
implemented multiple different menus that users can
navigate throughout using the dancepads. Inside of the
settings menu for example, changing the in game volume
and the speed at which the notes fall in the game, is
seamless by being able to hold down the dance pad arrows
and change the slider.

SETTINGS

CREATE CHART

Fig. 5. Image of Main Menu and Start Screen of S.T.E.P.S

To start off our game, we are met with our main menu
(as shown in figure 5 correctly reference it). Users have
the ability to play the game, switch to the settings menu to
change their game volume and the speed at which the
notes are able to fall at, and lastly be able to create their
own charts to play.

CANCEL

Fig. 6.
game

Image of the settings menu during the running of the

Moving on to the settings menu, we are met with this
Ul As one can see, this is a very simple settings menu
where one can change the game volume and change the
speed of the notes as mentioned before. Using additional
coding logistics and manipulation of built in properties of
assets, one is able to cancel the changes that they have
made and go back to the defaulted settings, they can
confirm their changes to which the settings will be saved
globally and taken back to the main menu screen, or they
are able to exit the settings menu when they would like
and return back to the main menu screen.
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Image of the song selection menu during the running of

Lastly before playing the chart, is our song selection
menu where users are able to select their song of choice
and play the map related to it. Using a list of songs and list
of images, exists a linked list that will wrap around to the
beginning once it reaches the end of the list.

2) Computer Vision Model

A lightweight RGB pose stack runs at camera frame
rate; the engine computes angular deltas vs. per-pose
acceptance bands and gates the Style award on temporal
alignment with the music beat window. To improve
reliability, we restrict recognition to a curated pose set
rather than unconstrained freestyle.

Figure 8 shows 6 possible poses that the player can be
prompted to perform while in game. Running on a
separate thread, there is a process constantly taking in
input from the camera and attempting to map 32
landmarks to represent the bones on the player[7-8]. These
landmarks include dots mapped onto the left and right
wrists, shoulders, hips, and head. In each frame it is
possible to get the coordinates of these landmarks which is
particularly useful in relation to each of the other
landmarks.

Figure 9 shows using landmarks in action to identify the
Muscle Man pose specifically in testing. Identifying the
different poses we take a tailored approach for each pose.
For example, when it comes to the Muscle Man pose the
main concern is the placement of both the wrists and
elbows being above the shoulders, while also having the



elbow bent at a certain angle range. Looking at figure 9,
we can see an example of a code block that would
determine if our pose would be a Muscle Man pose.

Tough Guy Pose Samurai Pose Stop! Pose

Fig. 8. Table of 6 different poses available in the game. Art
made with PoseMy.Art

FPS 29.1
Pose: Muscle Man Pose

¥

Fig. 9.  Screenshot of running MediaPipe with debugging tools
to demonstrate how using landmarks can accurately and
efficiently identify poses.

Fig. 10. Code block showcasing how one can easily determine
a specific pose like the Muscle Man pose by calculating the
distances and angles between landmarks.

3) UDP Sender

Our vision code runs outside of the main game loop, so
we needed a fast and simple way to send pose data from
the Python process to the game engine in Godot. Because
both programs run on the same computer, we didn’t need a
complicated networking setup, just something lightweight

that could move small packets of data between processes
almost instantly. For this reason, we chose to use a local
UDP socket on 127.0.0.1:54545. The “local” part means
the data never actually leaves the machine or travels
through any external network. It stays entirely within the
operating system’s memory, so the transfer time is
effectively negligible. Figure 11 shows a clear visual
understanding of the process on the high-level overview
on how the vision process communicates with the game
process.

We specifically went with UDP instead of TCP because
of how the two protocols handle data. TCP guarantees that
every packet arrives in order, but it does that by adding a
lot of overhead and waiting for acknowledgments
whenever something goes missing. That may be suited for
something like web pages or file downloads, but
considering our purposes it is not needed for real-time
live camera feed pose deduction. In our case, we’re
sending updates 60 to 120 times per second, and losing
one or two frames isn’t a problem. In fact, the next one
will be along in less than 20 milliseconds.

Using TCP would have introduced extra latency and
possibly caused the game to stutter if even a single packet
were delayed or had to be resent. UDP, on the other hand,
is connectionless and doesn’t care about perfect reliability.
It just sends each packet as fast as possible and moves on.

That makes UDP perfect for this type of one-way,
high-frequency data stream. We only need the most recent
pose at any given moment, not a history of every pose
since the start of the song. If a packet gets dropped, the
game simply continues using the last one until a new one
arrives a fraction of a second later. Because both processes
are local, packet loss is extremely rare anyway, so we get
the benefit of ultra-low latency without worrying about
missed data.

B. Software Diagrams

1) Menu Diagram
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Fig. 11.



2) Gameplay Diagram
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Fig. 12. Diagram of how the game operates

The gameplay diagram starts off with the song starting,
to which objects fall to the beat of the song. Afterwards
when users attempt to “hit” the note at the correct time, it is
recorded and the score will reflect said score value. One
example is a “Perfect” timing has a value of 10 while a
“Miss” timing has a value of 0. During this time
additionally the style score is added using computer vision
calculations when pose prompts appear. This will happen
continuously until the song ends to which the total score
will be shown after all calculations have been conducted.

3) Computer Vision Diagrams
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Fig. 13. Software Flow chart for how the game receives
information from the computer vision sub-system.

Pre-compute
.| Apply MediaPipe N landmark
New Camera Frame i landmarks 7| features(Elbow
Angles, distances)

Push evaluated pose . . Ewvaluate poses in order,
fo the voting_queue if voting_que >10 |« first match wins

>

Use majority vote to
establish current pose

Fig. 14. Software Flow chart for how frames are interpreted
and processed to evaluate the player’s pose.

C. Software Testing

Our software testing centered on making the pose
detection feel natural and reliable in real play, not just in
unit tests. Traditional function-level checks are useful, but
computer-vision behavior depends on people, lighting, and
motion, so we emphasized iterative, human-in-the-loop
evaluation.

We started with a rough pose classifier and then ran short
test rounds with multiple participants. In each round, every
participant performed all six poses ten times in sequence.
For each attempt we logged whether the system produced
the correct stable label within the acceptance window.
After each round we adjusted thresholds, such as elbow
angles, wrist-to-shoulder distances, the torso-scale factor,
and the stability parameters (window size and cooldown),
then repeated the protocol.

This process of testing into tweaking into re-testing loop
continued until the classifier consistently matched how the
poses should feel in game. Across multiple participants and
poses, the final round reached 98.33% pose detection
accuracy with some remaining errors concentrated in fast
transitions between visually similar poses.

For the game itself, software testing focused mainly on
ensuring smooth timing, reliable input, and stable
gameplay. Rhythm games rely on precise synchronization,
so even the smallest timing errors can break the
experience. Testing involved verifying that the notes in
each map synchronized with the beat of the music. To
further prevent these kinds of issues, we introduced the
ability to set a toggleable offset. Additional tests involved
rapid input sequences and long play sessions to confirm
consistent HID response without dropped inputs or frame
stutters. Menu navigation and song selection were also
tested to wverify correct wrapping behavior and state
transitions.



VII. CONCLUSION

S.T.E.P.S. demonstrates that hybrid scoring with timing
accuracy and pose-based style can broaden rhythm-game
appeal while remaining technically tractable on
student-designed hardware. A modular three-board
architecture, FSR-based tiles, an RGB global-shutter
vision stack, and an HID-centric software path together
yielded a responsive, engaging prototype. We hope this
blueprint accelerates future teams building expressive,
vision-aware game systems.
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