
S.T.E.P.S. - Style Tracking 
Expressive Pad System 

Group 8: Christopher Solanilla, Jani John 
Lumibao, Anderes Abrams, Kaila Peeples 

Department of Electrical and Computer 
Engineering, and College of Optics and 

Photonics, University of Central Florida, 
Orlando, Florida, 32816 

 
Abstract - This paper presents S.T.E.P.S. (Style Tracking 

Expressive Pad System), a nine‑panel rhythm game platform 
that fuses traditional timing‑based foot input with real‑time, 
camera‑based pose evaluation. The system integrates custom 
modular hardware, a computer‑vision subsystem, and a 
game engine that computes both accuracy and a Style Score 
from predefined full‑body poses. We detail the mechanical, 
electrical, optical, and software design choices; discuss 
communication and power architectures; and report 
integration results and lessons learned. The prototype 
demonstrates low‑latency sensing and robust tracking under 
varied lighting, offering an extensible approach for 
interactive entertainment, exercise-gaming, and overall 
human‑computer interaction. 

I.  INTRODUCTION 

Commercial rhythm games such as DDR, Pump It Up, 
and StepManiaX popularized timing‑based foot input on 
four to five panels. S.T.E.P.S. expands this paradigm with 
a nine‑panel pad (cardinals, diagonals, and center) and 
introduces a Style Score that rewards expressive, full‑body 
movement during designated moments. This dual‑metric 
design targets two goals: 1. preserve the “hit on time” skill 
loop that competitive players expect, and 2. explicitly 
value unique gestures with the upper body so casual and 
performance‑oriented players feel recognized. 

Achieving this required cross‑disciplinary engineering: 
embedded sensing for reliable foot detection, a modular 
electronics architecture to simplify wiring and debugging; 
a vision stack tolerant of variable lighting, and a game 
engine that synchronizes chart timing, HID input, and pose 
prompts. 

II. SYSTEM COMPONENTS 

The system is best understood by examining its primary 
hardware components and how they interact to form the 
complete design. This section provides a semi-technical 
overview of each module, outlining their functions and 
roles within the overall system. These components 
establish the foundation for data acquisition, processing, 

and communication across the architecture of the design. 

A. Microcontrollers 

Our design uses an ATmega32U4 microcontroller for 
the Master PCB and nine ATmega328P microcontrollers 
for the Input Tile PCBs. These chips were chosen because 
they’re reliable, power-efficient, and easy to program 
using the Arduino IDE. Both provide the necessary 
processing performance and memory for our system, while 
also supporting USB communication for smooth data 
transfer between the dance pad and the computer. 

B. Dance Pad Sensors 

Each input tile uses a Force-Sensing Resistor (FSR) to 
detect when a player steps on it. We selected the Interlink 
[2] Electronics FSR 408 model because it’s durable, 
affordable, and provides consistent sensitivity. The FSRs 
convert foot pressure into analog signals that are read by 
the microcontrollers, allowing the system to accurately 
capture and respond to each player’s movements. 

C. Communication Protocol 

I²C communication was selected for its efficiency and 
scalability, allowing all nine Tile Boards to interface with 
the Master Controller through only two data lines and 
power connections. This minimizes wiring complexity, 
conserves I/O pins, and maintains sufficient data speed for 
real-time sensor polling and LED control, making it the 
most suitable protocol for the system’s modular 
architecture. 

D. Power Supply 

A 12V DC, 7A external switch-mode power supply 
(SMPS) was chosen to provide stable and efficient power 
delivery across the nine-tile system. The 12 V output 
meets the LED voltage requirements, while the 7 A rating 
offers sufficient overhead beyond the calculated 6 A load. 
The SMPS architecture ensures high efficiency and tight 
voltage regulation for both high-current lighting and 
low-power microcontrollers. Electrical noise is effectively 
mitigated through onboard filtering and decoupling 
networks integrated into the Power Hub and Master 
Controller PCBs. This configuration delivers a safe, 
reliable, and compact power solution that supports the 
modular design and overall system performance. 

E. Voltage Regulator  

The system's power subsystem is centered around a 
TPS56628, a 4.5V-18V, 6A synchronous buck converter. 
This regulator steps down the 12V input from an external 
power adapter to a stable 5V rail, which powers both the 
main ATmega32U4 controller and a 3x3 grid of nine 
ATmega328PB tiles. To mitigate voltage drop and manage 
the cumulative current load across the grid, the 5V supply 
is split into three distinct power lines. Each line is 
dedicated to servicing one column of the 3x3 PCB array, 
ensuring all tiles receive a stable operating voltage. 



F. NIR LED Control 

Control of the Near-Infrared (NIR) LED array is 
achieved using a low-side N-channel MOSFET switch 
(IRLR7843TRPBF). This logic-level MOSFET is driven 
directly by a PWM signal from the microcontroller. The 
5V signal from the MCU pin fully exceeds the MOSFET's 
2.3V threshold, turning it completely on and allowing 
current to flow through the LEDs. This PWM-based 
switching enables fine-grained brightness control and 
significantly reduces overall power consumption[5]. 

III. SYSTEM CONCEPT 

To understand the complete system, a system flowchart 
would be helpful. 

 

Fig. 1.​ Overall system flowchart showing the three main 
operational states (Receive, Decide, and Play) and how user 
inputs progress through each stage of the dance pad system. 

In the receive portion of the cycle, inputs from the FSRs 
are detected and processed by the Master Controller. This 
occurs at two possible times: when the system is idle on 
the game menu, or when a song is actively being played. 
During the idle state, FSR inputs are primarily used for 
navigating through the menu options or selecting game 
modes. However, during gameplay, FSR inputs function as 
step detections on beat with the music. The receive state 
therefore serves as both an input detection phase and an 
interrupt listener, depending on the current stage of 
operation. When the system is idle, FSR readings are 
continuously monitored until a valid input is registered, 
prompting a transition to the decide state. During active 
gameplay, the same inputs are instead passed directly to 
the play state logic, where they are compared to the timing 

data of the selected song map. 

In the decide portion of the cycle, the system interprets 
the FSR inputs received during the menu phase to 
determine which song and difficulty level the player has 
selected. Once a valid selection is confirmed, the Master 
Controller communicates the corresponding song data and 
configuration to the computer running the game software. 
This transition is notated by the “Song selected?” decision 
diamond on the flowchart. If no song selection is made, 
the system remains in the receive state, waiting for 
additional input. Upon a valid selection, the system 
advances to the play state, where the actual gameplay is 
initiated. The decide state is therefore responsible for 
verifying input, determining gameplay parameters, and 
establishing the transition from idle interaction to active 
performance. 

In the play portion of the cycle, the selected song map is 
executed, and the system actively monitors FSR inputs 
along with camera-based computer vision data. The FSR 
inputs are used to detect step accuracy in real time, while 
the external camera sends positional data for pose tracking 
and movement analysis. These two input streams are 
processed together to evaluate player performance 
throughout the song. The play state is the longest and most 
dynamic portion of the cycle, functioning as both a 
continuous input-processing state and a monitoring state 
for end-of-song events. When the song concludes, the 
system transitions back to the receive state for menu 
navigation and result viewing, completing the full 
operational loop of the dance pad system. 

A. System Hardware Concept 

The following block diagrams present each primary 
hardware module, highlighting the data and control flow 
between them.  

 

Fig. 2.​ High level hardware visual of overall design 



 

Fig. 3.​ Hardware block diagram of the design’s major system 
components, shown in a data I/O flowchart 

IV. HARDWARE DETAIL 

While all hardware components have been outlined and 
briefly explained in the past sections, the following section 
explains the hardware components of the design in 
technical detail, with the exception of the power hub, as it 
was already explained in enough detail in Section II.  

A. Hardware Components  

1) ATmega32u4 Microcontroller (Master) 

Upon researching for the most reliable master 
microcontroller unit, we ultimately decided on using the 
ATmega32u4 chip, which is commonly found in Arduino 
Leonardo development boards. The ATmega32u4 natively 
supports USB HID[9], which allows it to act as a keyboard 
or joystick, extremely crucial for our game’s real-time step 
detection. The ATmega32u4 has just enough analog inputs 
for our design by the way we have it wired out. Overall, it 
has the right balance between functionality, ease of use, 
and affordability, making it a practical and reliable core 

controller for our dance pad system, especially for 
single-player setups with limited hardware demands. 

2) ATmega328pb Microcontroller (Slave Input Tile) 

For our nine slave input tiles, we needed a 
microcontroller chip that could do the bare minimum as it 
would only be responsible for LED functionality and 
connecting to the FSRs. Additionally, to stay within our 
budget, we needed an affordable MCU. As a result, we 
decided on the ATmega328pb chip, which is commonly 
found in Arduino Uno development boards. The 
ATmega328pb chip is very compatible with ATmega32u4, 
so communication between the two through Arduino IDE 
is very simple to work with. In terms of design, each of 
our dance pad’s input tiles will have four FSRs connected 
to them and four I2C connection headers[4] to be able to 
connect with other input tiles. ATmega328pb can satisfy 
all design requirements while being very cost-efficient.  

TABLE I 

KEY FEATURES OF THE DESIGN’S MCUS 

Feature ATmega32u4 ATmega328pb 

Clock Speed 16 MHz 16 MHz 

Flash Memory 32 KB 32 KB 

PWM Channels 7 6 

ADC Inputs 12 6 

USB Comm. native USB serial-to-USB 

USB HID support included none 

Cost ~$4 ~$3 

3) Force Sensing Resistors (FSRs) 

The FSR Model 408 from Interlink Electronics was 
selected for its reliability, consistency, and ease of 
integration. Its 300 mm flexible strip design provides a 
large sensing area with uniform pressure response, 
ensuring accurate detection across all tiles. The sensor’s 
pre-calibrated nature eliminates the need for manual 
tuning and minimizes issues such as drift or dead zones 
that can affect gameplay precision. Its slim form factor 
allows seamless installation beneath each pad surface, 
while its durable construction withstands repeated impacts 
over time. Overall, the Model 408 delivers the stability, 
responsiveness, and plug-and-play simplicity needed for a 
performance-grade dance pad system. 

B. Hardware Testing  

One of our key engineering specifications is the dance 
pad’s input response time, therefore, we had to base our 
hardware testing on the overall speed it takes for the 



player to physically press on an input tile to the moment 
the game registers the press as input. While we have tested 
and found that the raw response time of the FSRs in 
communication with the game is almost instantaneous, we 
can’t assume for sure the true speed until the overall 
system is established, which at this moment, it’s not. 
However, once the dance pad system is fully integrated, 
we will then be able to demonstrate, with results, the 
dance pad’s true input response time.  

V. OPTICAL SYSTEM DETAIL 

The optical subsystem of our project is what provides all 
the visual input needed for MediaPipe[1] to track the 
player’s body in real time. It Includes an 850 nm 
near-infrared (NIR) illumination setup, a global-shutter 
RGB camera[3], and a wide angle aspherical M12 lens. 
The goal was to create an imaging setup that could provide 
consistent illumination and resolution across a 1.8m x 1.8 
m play area. 

After testing in several environments, it was clear that 
MediaPipe only requires around 40% illumination 
uniformity for accurate tracking. In bright spaces like the 
Senior Design Lab, the existing overhead lighting already 
provides enough visible light for the camera, so the 
additional NIR illumination isn’t even necessary. The 
LEDs mainly help in darker rooms where ambient light is 
limited. 

A. Optical Components  

1) Imaging Lens 

A 3.2mm f/2.3 M12 aspherical lens 
(CIL034-F2.3-M12ANIR) is being used because it gives a 
97° diagonal field of view and has the ability to capture 
the 850 nm illumination well due to not having a IR cut 
filter. This lens, combined with the 1/ 2.6’’ AR0234 
sensor, covers the 1.8m x 1.8m play area at  a 1.8m 
working distance and provides about 0.6 pixels per 
millimeter (≈1.7 mm pixel⁻¹) across the pad. While that 
isn’t enough to resolve 1mm-sized features, it’s more than 
enough for full-body pose tracking since joints and limbs 
span many pixels. MediaPipe consistently reached ≥ 95 % 
tracking accuracy with this configuration, so the 3.2 mm 
lens was kept for its wide coverage and simplicity. 
Depth-of-field analysis using a 0.005 mm circle of 
confusion confirmed that subjects between roughly 1.5m 
and 2.1 m stay in focus. 

2) Camera Module 

The SVPRO AR0234 global-shutter camera runs up to 
120 fps @ 720 p with 3.45 µm pixels and strong 
near-infrared sensitivity. The global shutter helps prevent 
motion distortion during fast movements, which is critical 
for a dance-based system. The USB 3.0 interface enables 
low-latency data transfer between the camera and 
processing unit, and the camera integrates cleanly with the 

illumination and lens system to provide stable input for 
tracking.  

3) Illumination System  

The illuminations system uses one 116-inch, ~42W 850 
nm LED strip mounted around the perimeter of the 
monitor frame to directly face the player area. The strips 
are powered by a 12 V constant-voltage supply and remain 
continuously on during tracking. Earlier tests were done 
using aluminum channels with diffusers, but the diffusers 
resulted in reduced brightness and lower measured 
illumination uniformity.The effect was likely caused by  
insufficient mixing distance and wavelength-dependent 
scattering, which caused uneven attenuation of the 850nm 
emission.  Removing them produced a more uniform and 
higher-intensity NIR distribution across the play area. In 
bright rooms, the ambient lighting alone is sufficient for 
MediaPipe tracking, so the NIR LEDs primarily serve as 
supplemental illumination for darker testing environments. 
Figure 4 demonstrates that in the controlled environment, 
the illumination system achieves  the 90% uniformity 
spec.  

B. Optical Testing 

Illumination uniformity was measured in MATLAB 
using the min-to-mean intensity ratio across a defined 
region of interest. In controlled dark-room testing, the 
system reached about 91 % uniformity. In more open or 
reflective environments, results ranged from 40% to 75% 
depending on wall color, ceiling height, and background 
reflections. Camera testing was performed alongside these 
trials to confirm that exposure, contrast, and frame 
stability were maintained across all lighting conditions. 
Even at the lower end of illumination uniformity, 
MediaPipe consistently maintained full tracking accuracy, 
confirming that roughly 40% uniformity is sufficient for 
proper operation. 

 

Fig. 4.​ Frame-by-frame illumination uniformity measurement. 
The orange region indicates frames where a player was present. 
Uniformity remained between 80 % and 91 % throughout testing, 
confirming stable illumination during motion.​  



VI. SOFTWARE DETAIL 

The game engine handles song selection, chart parsing, 
scroll timing, note judgments, combo/scoring logic, and 
UI overlays. The HID input path abstracts pad events as 
buttons, avoiding custom kernel drivers. 

A. Software Components 

1) Godot Game Engine 

Inside the game engine of choice Godot, we have 
implemented multiple different menus that users can 
navigate throughout using the dancepads. Inside of the 
settings menu for example, changing the in game volume 
and the speed at which the notes fall in the game, is 
seamless by being able to hold down the dance pad arrows 
and change the slider. 

 

Fig. 5.​ Image of Main Menu and Start Screen of S.T.E.P.S 

To start off our game, we are met with our main menu 
(as shown in figure 5 correctly reference it). Users have 
the ability to play the game, switch to the settings menu to 
change their game volume and the speed at which the 
notes are able to fall at, and lastly be able to create their 
own charts to play. 

 

Fig. 6.​ Image of the settings menu during the running of the 
game 

Moving on to the settings menu, we are met with this 
UI. As one can see, this is a very simple settings menu 
where one can change the game volume and change the 
speed of the notes as mentioned before. Using additional 
coding logistics and manipulation of built in properties of 
assets, one is able to cancel the changes that they have 
made and go back to the defaulted settings, they can 
confirm their changes to which the settings will be saved 
globally and taken back to the main menu screen, or they 
are able to exit the settings menu when they would like 
and return back to the main menu screen. 

 

Fig. 7.​ Image of the song selection menu during the running of 
the game 

Lastly before playing the chart, is our song selection 
menu where users are able to select their song of choice 
and play the map related to it. Using a list of songs and list 
of images, exists a linked list that will wrap around to the 
beginning once it reaches the end of the list. 

2) Computer Vision Model 

A lightweight RGB pose stack runs at camera frame 
rate; the engine computes angular deltas vs. per‑pose 
acceptance bands and gates the Style award on temporal 
alignment with the music beat window. To improve 
reliability, we restrict recognition to a curated pose set 
rather than unconstrained freestyle. 

Figure 8 shows 6 possible poses that the player can be 
prompted to perform while in game. Running on a 
separate thread, there is a process constantly taking in 
input from the camera and attempting to map 32 
landmarks to represent the bones on the player[7-8]. These 
landmarks include dots mapped onto the left and right 
wrists, shoulders, hips, and head. In each frame it is 
possible to get the coordinates of these landmarks which is 
particularly useful in relation to each of the other 
landmarks.  

Figure 9 shows using landmarks in action to identify the 
Muscle Man pose specifically in testing. Identifying the 
different poses we take a tailored approach for each pose. 
For example, when it comes to the Muscle Man pose the 
main concern is the placement of both the wrists and 
elbows being above the shoulders, while also having the 



elbow bent at a certain angle range. Looking at figure 9, 
we can see an example of a code block that would 
determine if our pose would be a Muscle Man pose.  

 

Fig. 8.​ Table of 6 different poses available in the game. Art 
made with PoseMy.Art 

 

Fig. 9.​ Screenshot of running MediaPipe with debugging tools 
to demonstrate how using landmarks can accurately and 
efficiently identify poses.  

Fig. 10.​ Code block showcasing how one can easily determine 
a specific pose like the Muscle Man pose by calculating the 
distances and angles between landmarks. 

3) UDP Sender 

Our vision code runs outside of the main game loop, so 
we needed a fast and simple way to send pose data from 
the Python process to the game engine in Godot. Because 
both programs run on the same computer, we didn’t need a 
complicated networking setup, just something lightweight 

that could move small packets of data between processes 
almost instantly. For this reason, we chose to use a local 
UDP socket on 127.0.0.1:54545. The “local” part means 
the data never actually leaves the machine or travels 
through any external network. It stays entirely within the 
operating system’s memory, so the transfer time is 
effectively negligible. Figure 11 shows a clear visual 
understanding of the process on the high-level overview 
on how the vision process communicates with the game 
process. 

We specifically went with UDP instead of TCP because 
of how the two protocols handle data. TCP guarantees that 
every packet arrives in order, but it does that by adding a 
lot of overhead and waiting for acknowledgments 
whenever something goes missing. That may be suited for 
something like web pages or file downloads, but 
considering our  purposes it is not needed for real-time 
live camera feed pose deduction. In our case, we’re 
sending updates 60 to 120 times per second, and losing 
one or two frames isn’t a problem. In fact, the next one 
will be along in less than 20 milliseconds.  

Using TCP would have introduced extra latency and 
possibly caused the game to stutter if even a single packet 
were delayed or had to be resent. UDP, on the other hand, 
is connectionless and doesn’t care about perfect reliability. 
It just sends each packet as fast as possible and moves on. 

That makes UDP perfect for this type of one-way, 
high-frequency data stream. We only need the most recent 
pose at any given moment, not a history of every pose 
since the start of the song. If a packet gets dropped, the 
game simply continues using the last one until a new one 
arrives a fraction of a second later. Because both processes 
are local, packet loss is extremely rare anyway, so we get 
the benefit of ultra-low latency without worrying about 
missed data. 

B. Software Diagrams 

1) Menu Diagram 

 

Fig. 11.​ Menu flow diagram 



2) Gameplay Diagram 

 

Fig. 12.​ Diagram of how the game operates 

The gameplay diagram starts off with the song starting, 
to which objects fall to the beat of the song. Afterwards 
when users attempt to “hit” the note at the correct time, it is 
recorded and the score will reflect said score value. One 
example is a “Perfect” timing has a value of 10 while a 
“Miss” timing has a value of 0. During this time 
additionally the style score is added using computer vision 
calculations when pose prompts appear. This will happen 
continuously until the song ends to which the total score 
will be shown after all calculations have been conducted. 

3) Computer Vision Diagrams 

 

Fig. 13.​ Software Flow chart for how the game receives 
information from the computer vision sub-system.  

 

 

Fig. 14.​ Software Flow chart for how frames are interpreted 
and processed to evaluate the player’s pose.  

C. Software Testing 

Our software testing centered on making the pose 
detection feel natural and reliable in real play, not just in 
unit tests. Traditional function-level checks are useful, but 
computer-vision behavior depends on people, lighting, and 
motion, so we emphasized iterative, human-in-the-loop 
evaluation. 

We started with a rough pose classifier and then ran short 
test rounds with multiple participants. In each round, every 
participant performed all six poses ten times in sequence. 
For each attempt we logged whether the system produced 
the correct stable label within the acceptance window. 
After each round we adjusted thresholds, such as  elbow 
angles, wrist-to-shoulder distances, the torso-scale factor, 
and the stability parameters (window size and cooldown), 
then repeated the protocol. 

This process of testing into tweaking into re-testing loop 
continued until the classifier consistently matched how the 
poses should feel in game. Across multiple participants and 
poses, the final round reached 98.33% pose detection 
accuracy with some remaining errors concentrated in fast 
transitions between visually similar poses.  

For the game itself, software testing focused mainly on 
ensuring smooth timing, reliable input, and stable 
gameplay. Rhythm games rely on precise synchronization, 
so even the smallest timing errors can break the 
experience. Testing involved verifying that the notes in 
each map synchronized with the beat of the music. To 
further prevent these kinds of issues, we introduced the 
ability to set a toggleable offset. Additional tests involved 
rapid input sequences and long play sessions to confirm 
consistent HID response without dropped inputs or frame 
stutters. Menu navigation and song selection were also 
tested to verify correct wrapping behavior and state 
transitions. 



VII. CONCLUSION 

S.T.E.P.S. demonstrates that hybrid scoring with timing 
accuracy and pose‑based style can broaden rhythm‑game 
appeal while remaining technically tractable on 
student‑designed hardware. A modular three‑board 
architecture, FSR‑based tiles, an RGB global‑shutter 
vision stack, and an HID‑centric software path together 
yielded a responsive, engaging prototype. We hope this 
blueprint accelerates future teams building expressive, 
vision‑aware game systems. 
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